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 Foreword 
 

This working draft of the Standard replaces all previous versions.  The previous edition was working 
draft 3.3, dated 28 April 1997.  This version has improved formatting and updated contact details.  
The technical content remains unchanged from the previous version.  
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 Introduction 
 

The history of the standard 

A meeting of the Specialist Interest Group on Software Testing was held in January 1989 (this group 
was later to affiliate with the British Computer Society).  This meeting agreed that existing testing 
standards are generally good standards within the scope which they cover, but they describe the 
importance of good test case selection, without being specific about how to choose and develop test 
cases. 

The SIG formed a subgroup to develop a standard which addresses the quality of testing performed.  
Draft 1.2 was completed by November 1990 and this was made a semi-public release for comment.  A 
few members of the subgroup trialled this draft of the standard within their own organisations.  Draft 
1.3 was circulated in July 1992 (it contained only the main clauses) to about 20 reviewers outside of 
the subgroup.  Much of the feedback from this review suggested that the approach to the standard 
needed re-consideration. 

A working party was formed in January 1993 with a more formal constitution.  This has resulted in 
Working Draft 3.4. 

Aims of the standard 

The most important attribute of this Standard is that it must be possible to say whether or not it has 
been followed in a particular case (i.e. it must be auditable).  The Standard therefore also includes the 
concept of measuring testing which has been done for a component as well as the assessment of 
whether testing met defined targets.  

There are many challenges in software testing, and it would be easy to try and address too many 
areas, so the standard is deliberately limited in scope to cover only the lowest level of independently 
testable software.  Because the interpretation of and name for the lowest level is imprecise, the term 
"component" has been chosen rather than other common synonyms such as "unit", "module", or 
"program" to avoid confusion with these more common terms and remain compatible with them. 
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1 Scope 
 

1.1 Objective 

The objective of this Standard is to enable the measurement and comparison of testing performed on 
software components.  This will enable users of this Standard to directly improve the quality of their 
software testing, and improve the quality of their software products. 

1.2 Intended audience 

The target audience for this Standard includes: 

- testers and software developers; 
- managers of testers and software developers; 
- procurers of software products or products containing software; 
- quality assurance managers and personnel; 
- academic researchers, lecturers, and students; 
- developers of related standards. 
 

1.3 Approach 

This Standard prescribes characteristics of the test process. 

The Standard describes a number of techniques for test case design and measurement, which support 
the test process. 

1.4 What this Standard covers 

1.4.1 Specified components.  A software component must have a specification in order to be 
tested according to this Standard.  Given any initial state of the component, in a defined environment, 
for any fully-defined sequence of inputs and any observed outcome, it shall be possible to establish 
whether or not the component conforms to the specification. 

1.4.2 Dynamic execution.  This Standard addresses dynamic execution and analysis of the results 
of execution. 

1.4.3 Techniques and measures.  This Standard defines test case design techniques and test 
measurement techniques.  The techniques are defined to help users of this Standard design test cases 
and to quantify the testing performed.  The definition of test case design techniques and measures 
provides for common understanding in both the specification and comparison of software testing. 

1.4.4 Test process attributes.  This Standard describes attributes of the test process that indicate 
the quality of the testing performed.  These attributes are selected to provide the means of assessing, 
comparing and improving test quality. 

1.4.5 Generic test process.  This Standard defines a generic test process. A generic process is 
chosen to ensure that this Standard is applicable to the diverse requirements of the software industry. 
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1.5 What this Standard does not cover 

1.5.1 Types of testing.  This Standard excludes a number of areas of software testing, for 
example: 

- integration testing; 
- system testing; 
- user acceptance testing; 
- statistical testing; 
- testing of non-functional attributes such as performance; 
- testing of real-time aspects; 
- testing of concurrency; 
- static analysis such as data flow or control flow analysis; 
- reviews and inspections (even as applied to components and their tests). 
 

A complete strategy for all software testing would cover these and other aspects. 

1.5.2 Test completion criteria.  This Standard does not prescribe test completion criteria as it is 
designed to be used in a variety of software development environments and application domains.  Test 
completion criteria will vary according to the business risks and benefits of the application under test. 

1.5.3 Selection of test case design techniques.  This Standard does not prescribe which test case 
design techniques are to be used.  Only appropriate techniques should be chosen and these will vary 
according to the software development environments and application domains. 

1.5.4 Selection of test measurement techniques.  This Standard does not prescribe which test 
measurement techniques are to be used.  Only appropriate techniques should be chosen and these will 
vary according to the software development environments and application domains. 

1.5.5 Personnel selection.  This Standard does not prescribe who does the testing. 

1.5.6 Implementation.  This Standard does not prescribe how required attributes of the test 
process are to be achieved, for example, by manual or automated methods. 

1.5.7 Fault removal.  This Standard does not address fault removal.  Fault removal is a separate 
process to fault detection. 

1.6 Conformity 

Conformity to this Standard shall be by following the testing process defined in clause 2. 

1.7 Normative reference 

The following standard contains provisions which, through reference in this text, constitute 
provisions of the Standard.  At the time of publication, the edition was valid.  All standards are 
subject to revision, and parties to agreements based on the Standard are encouraged to investigate the 
possibility of applying the most recent edition of the standard listed below.  Members of IEC and ISO 
maintain registers of currently valid International Standards. 

ISO 9001:1994, Part 1: 1994 Specification for design/development, production, installation and 
servicing. 



 

Standard for Software Component Testing 
© British Computer Society, SIGIST, 2001 Working Draft 3.4  (27-Apr-01)  

5

 
2 Process 
 

2.1 Pre-requisites 

Before component testing may begin the component test strategy (2.1.1) and project component test 
plan (2.1.2) shall be specified. 

2.1.1 Component test strategy 

2.1.1.1 The component test strategy shall specify the techniques to be employed in the design of test 
cases and the rationale for their choice.  Selection of techniques shall be according to clause 3.  If 
techniques not described explicitly in this clause are used they shall comply with the 'Other Testing 
Techniques' clause (3.13). 

2.1.1.2 The component test strategy shall specify criteria for test completion and the rationale for 
their choice.  These test completion criteria should be test coverage levels whose measurement shall 
be achieved by using the test  measurement techniques defined in clause 4.  If measures not described 
explicitly in this clause are used they shall comply with the 'Other Test Measurement Techniques' 
clause (4.13). 

2.1.1.3 The component test strategy shall document the degree of independence required of 
personnel designing test cases from the design process, such as: 

a) the test cases are designed by the person(s) who writes the component under test; 

b) the test cases are designed by another person(s); 

c) the test cases are designed by a person(s) from a different section; 

d) the test cases are designed by a person(s) from a different organisation; 

e) the test cases are not chosen by a person. 

2.1.1.4 The component test strategy shall document whether the component testing is carried out 
using isolation, bottom-up or top-down approaches, or some mixture of these. 

2.1.1.5 The component test strategy shall document the environment in which component tests will 
be executed.  This shall include a description of the hardware and software environment in which all 
component tests will be run. 

2.1.1.6 The component test strategy shall document the test process that shall be used for component 
testing. 

2.1.1.7 The test process documentation shall define the testing activities to be performed and the 
inputs and outputs of each activity.  
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2.1.1.8 For any given test case, the test process documentation shall require that the following 
activities occur in the following sequence: 

a) Component Test Planning; 

b) Component Test Specification; 

c) Component Test Execution; 

d) Component Test Recording; 

e) Checking for Component Test Completion. 

2.1.1.9 Figure 2.1 illustrates the generic test process described in clause 2.1.1.8.  Component Test 
Planning shall begin the test process and Checking for Component Test Completion shall end it; 
these activities are carried out for the whole component. Component Test Specification, Component 
Test Execution, and Component Test Recording may however, on any one iteration, be carried out for 
a subset of the test cases associated with a component.  Later activities for one test case may occur 
before earlier activities for another. 

2.1.1.10 Whenever an error is corrected by making a change or changes to test materials or the 
component under test, the affected activities shall be repeated. 

BEGIN

Checking for
Component

Test Completion

Component
Test Recording

Component
Test Execution

Component
Test Specification

END

Component
Test Planning

 
 

Figure 2.1 Generic Component Test Process 
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2.1.2 Project component test plan 

2.1.2.1 The project component test plan shall specify the dependencies between component tests and 
their sequence.  Their derivation shall include consideration of the chosen approach to component 
testing (2.1.1.4), but may also be influenced by overall project management and work scheduling 
considerations. 

2.2 Component test planning 

2.2.1 The component test plan shall specify how the component test strategy (2.1.1) and project 
component test plan (2.1.2) apply to the given component under test.  This shall include specific 
identification of all exceptions to the component test strategy and all software with which the 
component under test will interact during test execution, such as drivers and stubs. 

2.3 Component test specification 

2.3.1 Test cases shall be designed using the test case design techniques selected in the test 
planning activity. 

2.3.2 The specific test specification requirements for each test case design technique are defined in 
clause 3.  Each test case shall be specified by defining its objective, the initial state of the component, 
its input, and the expected outcome. The objective shall be stated in terms of the test case design 
technique being used, such as the partition boundaries exercised. 

2.3.3 The execution of each test case shall be repeatable. 

2.4 Component test execution 

2.4.1 Each test case shall be executed. 

2.5 Component test recording 

2.5.1 The test records for each test case shall unambiguously record the identities and versions of 
the component under test and the test specification.  The actual outcome shall be recorded.  It shall be 
possible to establish that the all specified testing activities have been carried out by reference to the 
test records. 

2.5.2 The actual outcome shall be compared against the expected outcome.  Any discrepancy found 
shall be logged and analysed in order to establish where the error lies and the earliest test activity that 
should be repeated in order to remove the discrepancy in the test specification or verify the removal of 
the fault in the component. 

2.5.3 The test coverage levels achieved for those measures specified as test completion criteria 
shall be recorded. 

2.6 Checking for component test completion 

2.6.1 The test records shall be checked against the previously specified test completion criteria.  If 
these criteria are not met, the earliest test activity that must be repeated in order to meet the criteria 
shall be identified and the test process shall be restarted from that point. 

2.6.2 It may be necessary to repeat the Test Specification activity to design further test cases to 
meet a test coverage target. 
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3 Test Case Design Techniques 
 

3.1 Equivalence Partitioning 

3.1.1 Analysis.  Equivalence partitioning uses a model of the component that partitions the input 
and output values of the component.  The input and output values are derived from the specification 
of the component’s behaviour. 

The model shall comprise partitions of input and output values.  Each partition shall contain a set or 
range of values, chosen such that all the values can reasonably be expected to be treated by the 
component in the same way (i.e. they may be considered ‘equivalent’).  Both valid and invalid values 
are partitioned in this way. 

3.1.2 Design.  Test cases shall be designed to exercise partitions.  A test case may exercise any 
number of partitions.  A test case shall comprise the following: 

- the input(s) to the component; 
- the partitions exercised; 
- the expected outcome of the test case. 
 

Test cases are designed to exercise partitions of valid values, and invalid input values.  Test cases may 
also be designed to test that invalid output values cannot be induced. 

3.2 Boundary Value Analysis 

3.2.1 Analysis.  Boundary Value Analysis uses a model of the component that partitions the input 
and output values of the component into a number of ordered sets with identifiable boundaries.  These 
input and output values are derived from the specification of the component's behaviour. 

The model shall comprise bounded partitions of ordered input and output values.  Each partition shall 
contain a set or range of values, chosen such that all the values can reasonably be expected to be 
treated by the component in the same way (i.e. they may be considered 'equivalent').  Both valid and 
invalid values are partitioned in this way.  A partition's boundaries are normally defined by the values 
of the boundaries between partitions, however where partitions are disjoint the minimum and 
maximum values in the range which makes up the partition are used.  The boundaries of both valid 
and invalid partitions are considered. 

3.2.2 Design.  Test cases shall be designed to exercise values both on and next to the boundaries of 
the partitions.  For each identified boundary three test cases shall be produced corresponding to values 
on the boundary and an incremental distance either side of it.  This incremental distance is defined as 
the smallest significant value for the data type under consideration.  A test case shall comprise the 
following: 

- the input(s) to the component; 
- the partition boundaries exercised; 
- the expected outcome of the test case. 
 

Test cases are designed to exercise valid boundary values, and invalid input boundary values.  Test 
cases may also be designed to test that invalid output boundary values cannot be induced. 
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3.3 State Transition Testing 

3.3.1 Analysis.  State transition testing uses a model of the states the component may occupy, the 
transitions between those states, the events which cause those transitions, and the actions which may 
result from those transitions. 

The model shall comprise states, transitions, events, actions and their relationships.  The states of the 
model shall be disjoint, identifiable and finite in number.  Events cause transitions between states, 
and transitions can return to the same state where they began.  Events will be caused by inputs to the 
component, and actions in the state transition model may cause outputs from the component. 

The model will typically be represented as a state transition diagram, state transition model, or a state 
table. 

3.3.2 Design.  Test cases shall be designed to exercise transitions between states.  A test case may 
exercise any number of transitions.  For each test case, the following shall be specified: 

- the starting state of the component; 
- the input(s) to the component; 
- the expected outputs from the component; 
- the expected final state. 
 

For each expected transition within a test case, the following shall be specified: 

- the starting state; 
- the event which causes transition to the next state; 
- the expected action caused by the transition; 
- the expected next state. 
 

Test cases are designed to exercise valid transitions between states.  Test cases may also be designed 
to test that unspecified transitions cannot be induced. 

3.4 Cause-Effect Graphing 

3.4.1 Analysis.  Cause-Effect Graphing uses a model of the logical relationships between causes 
and effects for the component.  Each cause is expressed as a condition, which is either true of false 
(i.e. a Boolean) on an input, or combination of inputs, to the component.  Each effect is expressed as a 
Boolean expression representing an outcome, or a combination of outcomes, for the component 
having occurred. 

The model is typically represented as a Boolean graph relating the derived input and output Boolean 
expressions using the Boolean operators: AND, OR, NAND, NOR, NOT.  From this graph, or 
otherwise, a decision (binary truth) table representing the logical relationships between causes and 
effects is produced. 

3.4.2 Design.  Test cases shall be designed to exercise rules, which define the relationship between 
the component's inputs and outputs, where each rule corresponds to a unique possible combination of 
inputs to the component that have been expressed as Booleans.  For each test case the following shall 
be identified: 

- Boolean state (i.e. true or false) for each cause; 
- Boolean state for each effect. 
 

3.5 Syntax Testing 

3.5.1 Analysis.  Syntax Testing uses a model of the formally-defined syntax of the inputs to a 
component. 

The syntax is represented as a number of rules each of which defines the possible means of production 
of a symbol in terms of sequences of, iterations of, or selections between other symbols. 
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3.5.2 Design.  Test cases with valid and invalid syntax are designed from the formally defined 
syntax of the inputs to the component. 

Test cases with valid syntax shall be designed to execute options which are derived from rules which 
shall include those that follow, although additional rules may also be applied where appropriate: 

- whenever a selection is used, an option is derived for each alternative by replacing the 
selection with that alternative; 

- whenever an iteration is used, at least two options are derived, one with the minimum 
number of iterated symbols and the other with more than the minimum number of 
repetitions. 

 
A test case may exercise any number of options.  For each test case the following shall be identified: 

- the input(s) to the component; 
- option(s) exercised; 
- the expected outcome of the test case. 
 

Test cases with invalid syntax shall be designed as follows: 

- a checklist of generic mutations shall be documented which can be applied to rules or parts 
of rules in order to generate a part of the input which is invalid; 

- this checklist shall be applied to the syntax to identify specific mutations of the valid input, 
each of which employs at least one generic mutation; 

- test cases shall be designed to execute specific mutations. 
 

For each test case the following shall be identified: 

- the input(s) to the component; 
- the generic mutation(s) used; 
- the syntax element(s) to which the mutation or mutations are applied; 
- the expected outcome of the test case. 
 

3.6 Statement Testing 

3.6.1 Analysis.  Statement testing uses a model of the source code which identifies statements as 
either executable or non-executable. 

3.6.2 Design.  Test cases shall be designed to exercise executable statements. 

For each test case, the following shall be specified: 

- the input(s) to the component; 
- identification of statement(s) to be executed by the test case; 
- the expected outcome of the test case. 
 

3.7 Branch/Decision Testing 

3.7.1 Analysis.  Branch testing requires a model of the source code which identifies decisions and 
decision outcomes.  A decision is an executable statement which may transfer control to another 
statement depending upon the logic of the decision statement.  Typical decisions are found in loops 
and selections.  Each possible transfer of control is a decision outcome. 

3.7.2 Design.  Test cases shall be designed to exercise decision outcomes. 

For each test case, the following shall be specified: 

- the input(s) to the component; 
- identification of decision outcome(s) to be executed by the test case; 
- the expected outcome of the test case. 
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3.8 Data Flow Testing 

3.8.1 Analysis.  Data Flow Testing uses a model of the interactions between parts of a component 
connected by the flow of data as well as the flow of control. 

Categories are assigned to variable occurrences in the component, where the category identifies the 
definition or the use of the variable at that point.  Definitions are variable occurrences where a 
variable is given a new value, and uses are variable occurrences where a variable is not given a new 
value, although uses can be further distinguished as either data definition P-uses or data definition C-
uses.  Data definition P-uses occur in the predicate portion of a decision statement such as while .. do, 
if .. then .. else, etc.  Data definition C-uses are all others, including variable occurrences in the right 
hand side of an assignment statement, or an output statement. 

The control flow model for the component is derived and the location and category of variable 
occurrences on it identified. 

3.8.2 Design.  Test cases shall be designed to execute control flow paths between definitions and 
uses of variables in the component. 

Each test case shall include: 

- the input(s) to the component; 
- locations of relevant variable definition and use pair(s); 
- control flow subpath(s) to be exercised; 
-  the expected outcome of the test case. 
 

3.9 Branch Condition Testing 

3.9.1 Analysis. Branch Condition Testing requires a model of the source code which identifies 
decisions and the individual Boolean operands within the decision conditions. A decision is an 
executable statement which may transfer control to another statement depending upon the logic of the 
decision statement. A decision condition is a Boolean expression which is evaluated to determine the 
outcome of a decision. Typical decisions are found in loops and selections. 

3.9.2 Design. Test cases shall be designed to exercise individual Boolean operand values within 
decision conditions. 

For each test case, the following shall be specified: 

-  the input(s) to the component; 
-  for each decision evaluated by the test case, identification of the Boolean operand to be 

exercised by the test case and its value; 
-  the expected outcome of the test case. 
 

3.10 Branch Condition Combination Testing 

3.10.1 Analysis.  Branch Condition Combination Testing requires a model of the source code 
which identifies decisions and the individual Boolean operands within the decision conditions. A 
decision is an executable statement which may transfer control to another statement depending upon 
the logic of the decision statement. A decision condition is a Boolean expression which is evaluated to 
determine the outcome of a decision. Typical decisions are found in loops and selections.  

3.10.2 Design. Test cases shall be designed to exercise combinations of Boolean operand values 
within decision conditions.  

For each test case, the following shall be specified: 

-  the input(s) to the component; 
-  for each decision evaluated by the test case, identification of the combination of Boolean 

operands to be exercised by the test case and their values; 
-  the expected outcome of the test case. 
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3.11 Modified Condition Decision Testing 

3.11.1 Analysis.  Modified Condition Decision Testing requires a model of the source code which 
identifies decisions, outcomes, and the individual Boolean operands within the decision conditions. A 
decision is an executable statement which may transfer control to another statement depending upon 
the logic of the decision statement. A decision condition is a Boolean expression which is evaluated to 
determine the outcome of a decision. Typical decisions are found in loops and selections.  

3.11.2 Design. Test cases shall be designed to demonstrate that Boolean operands within a decision 
condition can independently affect the outcome of the decision. 

For each test case, the following shall be specified: 

-  the input(s) to the component; 
-  for each decision evaluated by the test case, identification of the combination of Boolean 

operands to be exercised by the test case, their values, and the outcome of the decision; 
-  the expected outcome of the test case 
 

3.12 LCSAJ Testing 

3.12.1 Analysis.  LCSAJ testing requires a model of the source code which identifies control flow 
jumps (where control flow does not pass to a sequential statement). An LCSAJ (Linear Code 
Sequence and Jump) is defined by a triple, conventionally identified by line numbers in a source code 
listing: the start of the linear code sequence, the end of the linear code sequence, and the target line to 
which control flow is transferred. 

3.12.2 Design.  Test cases shall be designed to exercise LCSAJs. 

For each test case, the following shall be specified: 

- the input(s) to the component; 
- identification of the LCSAJ(s) to be executed by the test case; 
- the expected outcome of the test case. 
 

3.13 Random Testing 

3.13.1 Analysis.  Random Testing uses a model of the input domain of the component that defines 
the set of all possible input values.  The input distribution (normal, uniform, etc.) to be used in the 
generation of random input values shall be based on the expected operational distribution of inputs.  
Where no knowledge of this operational distribution is available then a uniform input distribution 
shall be used. 

3.13.2 Design.  Test cases shall be chosen randomly from the input domain of the component 
according to the input distribution. 

A test case shall comprise the following: 
- the input(s) to the component; 
- the expected outcome of the test case. 
The input distribution used for the test case suite shall also be recorded. 
 

3.14 Other Testing Techniques 

Other test case design techniques may be used that are not listed in this clause.  Any alternative 
techniques used shall satisfy these criteria: 

a) The technique shall be available in the public domain and shall be referenced. 
b) The test case design technique shall be documented in the same manner as the other test 

case design techniques in clause 3. 
c) Associated test measurement techniques may be defined as described in clause 4.13. 
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4 Test Measurement Techniques 
 

In each coverage calculation, a number of coverage items may be infeasible.  A coverage item is 
defined to be infeasible if it can be demonstrated to be not executable.  The coverage calculation shall 
be defined as either counting or discounting infeasible items - this choice shall be documented in the 
test plan.  If a coverage item is discounted justification for its infeasibility shall be documented in the 
test records. 

In each coverage calculation, if there are no coverage items in the component under test, 100% 
coverage is defined to be achieved by one test case. 

4.1 Equivalence Partition Coverage 

4.1.1 Coverage Items.  Coverage items are the partitions described by the model (see 3.1.1). 

4.1.2 Coverage Calculation.  Coverage is calculated as follows: 

 Equivalence partition coverage = 
number of covered partitions 

total number of partitions * 100 % 

4.2 Boundary Value Coverage 

4.2.1 Coverage Items.  The coverage items are the boundaries of partitions described by the model 
(see 3.2.1).  Some partitions may not have an identified boundary, for example, if a numerical 
partition has a lower but not an upper bound. 

4.2.2 Coverage Calculation.  Coverage is calculated as follows: 

 Boundary value coverage = 
number of distinct boundary values executed 

total number of boundary values * 100 %  

where a boundary value corresponds to a test case on a boundary or an incremental distance either 
side of it (see 3.2.2). 

4.3 State Transition Coverage 

4.3.1 Coverage Items.  Coverage items are sequences of one or more transitions between states on 
the model (see 3.3.1). 

4.3.2 Coverage Calculation.  For single transitions, the coverage metric is the percentage of all 
valid transitions exercised during test.  This is known as 0-switch coverage.  For n  transitions, the 
coverage measure is the percentage of all valid sequences of n  transitions exercised during test.  This 
is known as (n - 1) switch coverage. 

4.4 Cause-Effect Coverage 

4.4.1 Coverage Items.  Coverage items are rules, where each rule represents a unique possible 
combination of inputs to the component that have been expressed as Booleans. 

4.4.2 Coverage Calculation.  Coverage is calculated as follows: 

 Cause - Effect Coverage = 
Number of rules exercised 

Total number of rules * 100 %  
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4.5 Syntax Coverage 

No coverage measure is defined for syntax testing. 

4.6 Statement Coverage 

4.6.1 Coverage Items.  Coverage items are executable statements in the source code. 

4.6.2 Coverage Calculation.  Coverage is calculated as follows: 

 Statement Coverage = Number of executable statements executed 
Total number of executable statements * 100 %  

4.7 Branch and Decision Coverage 

4.7.1 Branch Coverage Items.  A branch is: 

• a conditional transfer of control from any statement to any other statement in the component; 
• an unconditional transfer of control from any statement to any other statement in the 

component except the next statement; 
• when a component has more than one entry point, a transfer of control to an entry point of 

the component. 
 

An entry point is either the first statement of the component or any other statement which may be 
branched to from outside the component. 

4.7.2 Branch Coverage Calculation.  Coverage is calculated as follows: 

 Branch Coverage = 
number of executed branches

total number of branches * 100 %  

4.7.3 Decision Coverage Items.  Decision Coverage uses the model of the component described 
for Branch Testing in clause 3.7.1.  Coverage items are decision outcomes. 

Decision Coverage is only defined for components with one entry point. 

4.7.4 Decision Coverage Calculation.  Coverage is calculated as follows: 

 Decision Coverage = 
number of executed decision outcomes 

total number of decision outcomes * 100 %  

4.8 Data Flow Coverage 

4.8.1 Coverage Items.  The coverage items are the control flow subpaths from a variable 
definition to the variable’s corresponding p-uses, c-uses, or their combination. 

4.8.2 Coverage Calculation.  For the purposes of these coverage calculations a definition-use pair 
is defined as a simple subpath between a definition of a variable and a use of that variable and 
coverage is calculated using the formula: 

Coverage = (N/T) * 100%, where N and T are defined in the subsequent subclauses. 

A simple subpath is a subpath through a component’s control flow graph where no parts of the 
subpath are visited more than necessary. 

4.8.2.1 All-definitions.  This measure is defined with respect to the traversal of the set of subpaths 
from each variable definition to some use (either p-use or c-use) of that definition. 

N = Number of exercised definition-use pairs from distinct variable definitions 
T = Number of variable definitions 
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4.8.2.2 All-c-uses.  This measure is defined with respect to the traversal of the set of subpaths from 
each variable definition to every c-use of that definition. 

N = Number of exercised definition-c-use pairs 
T = Number of definition-c-use pairs 

4.8.2.3 All-p-uses.  This measure is defined with respect to the traversal of the set of subpaths from 
each variable definition to every p-use of that definition. 

N = Number of exercised definition-p-use pairs 
T = Number of definition-p-use pairs 

4.8.2.4 All-uses.  This measure is defined with respect to the traversal of the set of subpaths from 
each variable definition to every use (both p-use and c-use) of that definition. 

N = Number of exercised definition-use pairs 
T = Number of definition-use pairs 

4.8.2.5 All-du-paths.  This measure is defined with respect to the traversal of the set of subpaths 
from each variable definition to every use (both p-use and c-use) of that definition. 

N = Number of exercised simple subpaths between definition-use pairs 
T = Number of simple subpaths between definition-use pairs 

4.9 Branch Condition Coverage 

4.9.1 Coverage Items.  Branch Condition Coverage uses a model of the component described in 
clause 3.9.1. Coverage items are Boolean operand values within decision conditions. 

Branch Condition Coverage is only defined for components with one entry point. 

4.9.2 Coverage Calculation.  Coverage is calculated as follows: 

 Branch  Condition Coverage  = number of Boolean operand values executed 
total number of Boolean operand values * 100 % 

 

4.10 Branch Condition Combination Coverage 

4.10.1 Coverage Items.  Branch Condition Combination Coverage uses a model of the component 
described in clause 3.10.1. Coverage items are unique combinations of the set of Boolean operand 
values within each decision condition. 

Branch Condition Combination Coverage is only defined for components with one entry point. 

4.10.2 Coverage Calculation.  Coverage is calculated as follows: 

Branch Condition Combination Coverage 

  = 
number of Boolean operand value combinations executed

total number of Boolean operand value combinations * 100 %  

4.11 Modified Condition Decision Coverage 

4.11.1 Coverage Items.  Modified Condition Decision Coverage uses a model of the component 
described in clause 3.11.1.  Coverage items are Boolean operand values within decision conditions. 

Modified Condition Decision Coverage is only defined for components with one entry point. 

4.11.2 Coverage Calculation.  Coverage is calculated as follows: 
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Modified Condition Decision Coverage 

 = 
number of Boolean operand values shown to independently affect the decision 
outcome total number of Boolean operands * 100 %  

4.12 LCSAJ Coverage 

4.12.1 Coverage Items.  Coverage items are LCSAJs for the component (see 3.12.1). 

4.12.2 Coverage Calculation  Coverage is calculated as follows: 

 LCSAJ Coverage  = 
number of executed LCSAJs 

total number of LCSAJs * 100 %  

4.13 Random Testing 

No coverage measure is defined for random testing. 

 

4.14 Other Test Measurement Techniques 

Other test measurement techniques may be used that are not listed in this clause.  Any alternative 
techniques used shall satisfy these criteria: 

a) The technique shall be available in the public domain and shall be referenced. 
b) The test measurement technique shall be documented in the same manner as the other test 

measurement techniques in clause 4. 
c) Associated test case design techniques may be defined as described in clause 3.13. 
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Annex A Process Guidelines  (informative) 
 

The purpose of this annex is to provide guidance on the requirements specified in clause 2 of this 
Standard. 

These guidelines are supported by the use of example documentation from a fictitious project, named 
EX.  The example documentation provides a basic sample of the full set of documentation which 
conforms to this Standard.  The technical content of the example documentation merely serves to 
illustrate one interpretation of this Standard and does not suggest that this interpretation is to be 
preferred over any other.  Any set of documentation which meets the requirements of clause 2 of this 
Standard is acceptable.  

The test documentation examples included are: 

• Component Test Strategy; 
• Project Component Test Plan; 
• Component Test Plan; 
• Component Test Specification; 
• Component Test Report. 

The relationships between the different forms of example test documentation can be seen in the 
following Document Hierarchy: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component 
Test Strategy 

Project 
Component 
Test Plan 

Component 
Test Report 

Component 
Test 

Specification 

Component 
Test Plan 
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The Document Hierarchy shows that there is a single Component Test Strategy for Project EX (in this 
example documented within the project’s Quality Plan) and a single Project Component Test Plan for 
the project.  For each component there is a Component Test Plan and corresponding Component Test 
Specification and Component Test Report. 

A.1 Pre-Requisites 

Clause 2 of the Standard specifies requirements for the overall test process including component 
testing. The prerequisites for component testing are an overall Component Test Strategy and a project 
specific Project Component Test Plan.  

A.1.1 Component Test Strategy 

A.1.1.1 To comply with this Standard, component testing must be carried out within a pre-defined 
documented strategy. Many organisations will achieve this through a corporate or divisional Testing 
Manual or Quality Manual. In other cases, the Component Test Strategy could be defined for one 
project only and may be presented as part of a specific project Quality Plan. 

A.1.1.2 This Standard does not prescribe that the component test strategy documentation need be a 
single document or a whole document. In the case where a Component Test Strategy is tailored to a 
specific project the component test strategy documentation could be incorporated into the project 
component test planning documentation. 

A.1.1.3 This Standard requires that the Component Test Strategy is defined in advance but does not 
prescribe the format of component test strategy documentation. 

A.1.1.4 As part of the test strategy, this Standard defines a generic test process comprising a series of 
test activities and requires this sequence of activities to be followed for a particular test case. This 
allows, for instance, incremental approaches such as planning, executing and recording the tests for 
one set of components before another; or planning, executing and recording the application of one test 
case design technique before another.  

A.1.1.5 Further requirements on the management of the testing are given in ISO-9001. Guidance on 
setting up a test process is available in [IEEE 1008]. 

A1.1.6 The form of the test completion criterion will typically be a target for test coverage.  

A.1.1.7 The following example provides a Component Test Strategy for Project EX developing the 
EX system. For the purposes of the example, the architectural design process decomposes the system 
into functional areas each containing a number of components. The example Component Test 
Strategy is provided as a section in the project’s Quality Plan. 

 

(Example) 

 

Project EX Quality Plan 

Section 6 

Component Test Strategy 
This section provides the component test strategy for Project EX. Any exceptions to this strategy (for example: omitted or 
additional design or measurement techniques) must be documented in the Component Test Plan.  

Exceptions to this strategy must be approved by the Project Manager and the Quality Manager. The use of any additional 
design or measurement techniques, where appropriate, is encouraged and can be done without specific approval. 
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(Example) 

 
1. Design Techniques: Component tests shall be designed using the following techniques: 

•    Equivalence Partitioning (EP, Std 3.1); 

•    Boundary Value Analysis (BVA, Std 3.2); 

•    Decision Testing (DT, Std 3.7). 

Rationale: EP and BVA  have proven cost-effective on previous releases. DT shall be used to complete coverage should 
EP and BVA  fail to meet the coverage completion criteria. 

2. Completion criteria: A minimum of 100% Equivalence Partition Coverage (EPC, Std 4.1), 100% Boundary 
Value Coverage (BVC, Std 4.2) and 90% Decision Coverage (DC, Std 4.7, 4.7.3 & 4.7.4) shall be achieved 
for each component test. 

Rationale: Equivalence Partition and Boundary Value Coverage are used to ensure full application of the corresponding 
test case design techniques, while Decision coverage provides a useful white box check on the overall set of 
test cases.  

3. Independence: No independence is required in the production of test plans and test specifications, or in the 
implementation of tests. All test documentation including test records must be reviewed by the member of the 
project to whom the originator of the work reports. 

4. Approach: Components shall be tested in isolation using stubs and drivers in place of interfacing 
components. 

5. Environment: Component tests shall be run in the developer’s own workspace. All output shall be logged to 
file. The Coverage Tool(1) shall be used to analyse the test coverage of each test run. 

6. Error Correction: Wherever possible, test cases for a component should be executed together in a single 
test run. The outcome of all test cases should then be analysed.  If corrections are needed then the entire 
component test should be repeated. 

7. Project Component Test Plan: A Project Component Test Plan shall be produced following completion of 
the architectural design of the EX system (Std 2.1.2). 

8. Component Test Process: Items 10 to 14 below detail the component test process. 

End

Checking for
Component

Test
Completion

Component
Test

Planning

Component
Test

Specification

Component
Test

Execution

Component
Test

Recording

Begin
Fix component & repeat

Fix Component Test Plan & repeat

Fix Component Test Specification & repeat

Fix Component Test Specification & repeat

 

9. Component Test Plan: Individual component tests will be planned following completion of the design for the 
functional area which a related group of components comprise.  

A Component Test Plan can be for a single component or a group of related components which comprise a functional 
area of the system. The Component Test Plan shall list the test case design techniques to be used when 
specifying tests for the component, the measurement techniques to be used when executing tests, stubs, 
drivers and specific test completion criteria. 

Exceptions to this Component Test Strategy shall be explicitly identified and approved where approval is required by this 
Component Test Strategy.  

Inputs: Architectural Design, Detailed Design, Project Component Test Plan, Quality Plan; 
Outputs: Component Test Plan. 

10. Component Test Specification: The component test specification shall provide a list of test cases 
annotated with the associated design elements which each test case exercises. This will help the related 
measurement criteria to be assessed.  

Prior to test execution, the test specification shall be reviewed for completeness. 
Inputs: Architectural Design, Detailed Design, Component Test Plan; 
Outputs: Component Test Specification. 
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(Example) 

 
11. Component Test Execution: Test execution shall be prepared by coding the drivers and stubs specified in 

the test plan, compiling and linking with the component under test. The test driver shall include code to control 
tests and create a log file.  Tests are then run. 

The Coverage Tool(1) shall be used during test execution to analyse test coverage. 
The objective of test execution shall be to execute all specified test cases. Test execution shall complete when either all 

test cases have been executed or an error is encountered which prevents continuation. Test execution should 
not be halted for minor errors (the error should be recorded and test execution continued).  

Inputs: Component Test Plan, Component Test Specification, Component Code; 
Outputs: Test outcomes, Test log file, Coverage analysis report, stub and driver code. 

12. Component Test Recording: The test log file shall be examined by the tester to compare actual test 
outcomes with expected test outcomes. Differences shall be investigated. Any due to software or test errors 
will raise a fault report.  Where a test is incomplete, this shall cause a regression in the test process. Where 
applicable, correction shall be made to the component design and/or code as necessary to correct for fault 
reports raised during the Component Test Recording activity. The test process shall then be repeated. 

A Component Test Record shall be produced each time a test is run, containing the version of component under test, 
version of the Component Test Specification, date and time of test, the number of test cases run, number of 
test discrepancies, coverage measurements and cross-references to any fault reports raised.  

Inputs: Test Plan, Test Specification, Test log file, Coverage analysis report, Component Code; 
Outputs: Component Test Record, Fault Reports. 

13. Checking for Component Test Completion: The Component Test Record shall be marked to show 
whether the overall test has passed and completion criteria have been met. 

Inputs: Component Test Plan (specifying completion criteria), Component Test Record, Fault Reports; 

Outputs: Component Test Record (pass/ fail). 

Where coverage has not been achieved, the Component Test Specification will normally be extended with further test 
cases until the required coverage level is achieved.  Exceptionally, with the approval of the Project Manager 
and the Quality Manager, the completion criteria in the Component Test Plan may be changed to the achieved 
level. 

 

 
A.1.1.9 Notes: 

(1) For the purposes of this example, a generic test coverage measurement tool has been 
used called “Coverage Tool”. In practice, a test strategy would explicitly give the 
name of any tool used. 

A.1.2 Project Component Test Planning 

A.1.2.1 This Standard does not prescribe that the Project Component Test Plan documentation need 
be a single document or a whole document. 

A.1.2.2 As a minimum, the Project Component Test Plan should identify any specific adaptations of 
the component test strategy and to specify any dependencies between component tests. 

A.1.2.3 Further guidance on test planning is available in [IEEE 829]. 

A.1.2.4 The following example provides a Project Component Test Plan for project EX. Strictly 
speaking, there are no dependencies between component tests because all components are tested in 
isolation. The hypothetical project EX desires to begin the integration of tested components before all 
component testing is complete. Thus the sequence of component testing is driven by the requirements 
of integration testing. 

(Example) 

Project EX 

Project Component Test Plan 
1. Dependencies: Strict adherence to the Component Test Strategy (isolation testing) removes any 
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(Example) 

dependencies between component tests. Nevertheless, consideration for subsequent integration means that 
it will be most convenient to complete the component testing of some parts of the system before that of other 
parts.  

The approach selected is to implement the kernel of each functional area of the system so that a minimal working thread 
can be established as early as possible. 

The component test sequence will be: 

•    LOG 1 - LOG 6;  

•    REM 1 - REM 6 (timing critical); 

•    RES 1 - RES 4; 

•    MIS 1 - MIS 5. 

Integration testing can now start in parallel with the remaining component tests. Remaining components will be tested in 
the sequence: 

•    RES 5 - RES 8;  

•    MIS 6 - MIS 10; 

•    LOG 7 - LOG 12;  

•    MIS 11 - MIS 20. 

 
 

A.2 Component Test Planning 

A.2.1 This Standard does not prescribe that the Component Test Plan documentation need be a 
single document or a whole document.  

A.2.2 The form of the test completion criterion is not mandated. This will typically be a test 
coverage target which has been mandated by the Component Test Strategy. 

A.2.3 Further guidance on test planning is available in [IEEE 829]. 

A.2.4 An example test plan for component LOG 3 of project EX is shown below. This could be 
contained in the same physical document as the previous document, the Project Component Test Plan 
for all components. 

 

(Example) 

Project EX 

Component Test Plan  

for 

Component LOG 3 
1. Design techniques: EP (Std 3.1), BVA (Std 3.2), DT (Std 3.7). 

2. Measurement Techniques: EPC (Std 4.1), BVC (Std 4.2) and DC (Std 4.7.3, 4.7.4). 

3. Completion Criteria: 

•    EPC 100% (Std 4.1); 

•    BVC 100% (Std 4.2); 

•    DC 100% (Std 4.7.3, 4.7.4). 
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(Example) 

Note: the Component Test Strategy requires only 90% Decision coverage, but this is a critical component(1). 

4. Stubs: for components LOG 4 and LOG 5 (which are called by LOG 3)(2). 

5. Driver: in place of component LOG 1 (which calls LOG 3)(2). 

6. Exceptions: The raised completion criteria of 100% decision coverage does not require approval(1). 

 

Exception approval - not applicable. 
 

 

A.2.5 Notes: 

(1) The example Test Strategy has stated that any additional coverage does not require 
explicit approval. 

(2) The calling tree for functional area “LOG” is that “LOG 1” calls “LOG 2” and 
“LOG 3”. “LOG 3” calls “LOG 4” and “LOG 5”. As “LOG 2” is not called by 
“LOG 3”, it is not required to test “LOG 3” 

LOG 1
(Driver)

LOG 2
(Not required) LOG 3

LOG 4
(Stub)

LOG 5
(Stub)

 

A.3 Test Specification 

A.3.1 The test specification for a component may be in machine-readable form; some test 
automation tools employ scripting languages that may meet the requirements of this Standard. 

A.3.2 An example Test Specification for component  LOG 3 in project EX is given below. Note 
that the specification has been extended (version 2) to cater for gaps in the coverage of the initial 
specification and errors as reported in the test record (A.5). 

(Example) 
 

Project EX 

Component Test Specification 

for 

Component LOG 3 (Issue A)(1) 

 
 

Test design table 
Test Objective: Input Validation 
Initial state of component for each test case: start of new entry 
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(Example) 
 

  
 

 

 
 

 
 Conditions 

 

  Valid 
Classes 

Tag Invalid 
Classes 

Tag Valid 
Boundaries 

Tag Invalid 
Boundaries 

Tag  

 Inputs 1-7 V1 < 1 X1 1 VB1 0 XB1  
    > 7 X2 7 VB2 8 XB2  
    non-digit X3      

 Outcomes Beginner (1-5) V2   5 VB3    
  Advanced(6-7) V3   6 VB4    

 
 

 
Test cases (2)

 
 Test 

Case 
Input Values Expected Outcome New Conditions covered 

(cross referenced to “Tag” 
in Test Design Table”) 

 

 1 3 Beginner V1, V2  

 2 7 Advanced V3, VB2  

 3 1 Beginner VB1  

 4 0 Error message X1, XB1  

 5 9 Error message X2  

 6 8 Error message XB2  

 7 A Error message X3  

 8 5 Beginner VB3  

 9 6 Advanced VB4  

 
 

Additional/Altered Test cases (Test Specification Version 2) (3)
 

 Test 
Case 

Description Expected Outcome Reason  

 2 7 Experienced Test fault  

 9 6 Experienced Test fault  

 10 <return> (no input) Re-display entry screen Decision Coverage  

 
 
 
 

A.3.3 Notes: 

(1) The tests are for Issue A of component LOG 3, a component which has not yet been 
issued, but will be given Issue A status when it has passed its component test. 

(2) Test cases have covered all tags in the Test Design Table with at least one test case, 
so we have 100% coverage of partitions and boundaries. 

(3) When the test cases were executed (see example Component Test Record in A.5.3), 
two test cases failed due to errors in the test case (2, 9), where the wrong term for 
the expected outcome (“Advanced” instead of “Experienced”) was used.  Test 
specification version 2 corrected these test cases and added one further test case to 
achieve 100% decision coverage. 
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A.4 Test Execution 

A.4.1 Test execution and coverage measurement are often performed by tools. This Standard does 
not prescribe how such tools work. 

A.5 Test Recording 

A.5.1 In the following example Test Report, component LOG 3 of project EX fails the first 
execution of tests 1 to 9. Test cases 2 and 9 fail due to errors in the test specification. These are 
corrected and a further test case is specified to complete decision coverage. 

A.5.2 After recording results each outcome is classified. Typically, one of the following situations 
will be recorded: 

a) A test has been incorrectly performed and must be repeated; 
b) A test has detected a fault in the component; the component must be changed, and the test 

repeated; 
c) A test has detected a fault in the specification of the component; the specification of the 

component, the component and the test specification (possibly) must be changed, and the 
test repeated; 

d) A test has detected a fault in the test specification; the test specification must be changed, 
and the test repeated; 

e) A test executes and produces the expected outcome; further test cases are performed, if any 
remain. 

 
A.5.3 It is possible that there is insufficient information to make the classification at this point in 
the process. In this instance, it may be necessary to extend the test specification and prepare and 
execute more test cases before deciding what to do. A record of all decisions made should be 
documented as part of the Test Report. 

 

(Example) 

Project EX 

Component Test Report 

for 

Component LOG 3 (Issue A)(1) 
 

Date: 17/1/1997 by D. Tester  
Component: LOG 3, Issue A(1) 
Component Test Specification LOG 3 Version 1 

 
Test cases executed: 1, 2, 3, 4, 5, 6, 7, 8, 9. 
Failed Test cases 

 Test 
Case 

Expected 
Outcome 

Actual 
Outcome 

 

 2 Advanced Experienced  

 9 Advanced Experienced  

Fault report TFR23 raised. Test cases 2 and 9 state incorrect expected outcome. 
Decision Coverage achieved: 83% 

 
 

Date: 20/1/1997 by D. Tester 
Component: LOG 3, Issue A(1) 
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(Example) 

Component Test Specification LOG 1 Version 2(2) 
Test cases executed: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 
All test cases matched expected outcome 
Decision Coverage achieved: 100% 
Test passed 
 

 

A.5.4 Notes: 

(1) The tests are for Issue A of component “LOG 3”, a component which has not yet 
been issued, but will be given Issue A status when it has passed its component test. 

(2) When the test cases were executed, two test cases failed due to errors in the test 
cases (2, 9). Test specification version 2 corrected these test cases (see example Test 
Specification A.4.2) and added one further test case to achieve 100% decision 
coverage. 

 

A.6 Checking for Test Completion 

A.6.1 A check against the test completion criteria is mandatory at this point.  If the criteria are not 
met, normally additional tests shall be required, alternatively, by allowing iteration of Test Planning, 
the Standard implicitly permits the relaxation (or strengthening) of test completion criteria. Any 
changes to the test completion criteria should be documented. 

A.6.2 If all test completion criteria are met then the component is released for integration. 



  Standard for Software Component Testing 
26 Working Draft 3.4  (27-Apr-01) © British Computer Society, SIGIST, 2001 

 
Annex B Guidelines for Testing Techniques and Test Measurement

 (informative) 
 

The purpose of this clause is to provide guidance on the requirements specified in clauses 3 and 4 of 
this Standard. 

Each test technique is based upon a model of the component. Since the easiest way to understand the 
model is by means of an example, the guidance provided here consists mainly of examples. A variety 
of applications and programming languages are used. The specification of a component is highlighted 
by means of an italic font.  Functional test case design techniques and measures may be used for any 
development environment.  Structural test case design techniques and measures are based on the 
underlying structure of the development language used.  Those described in this Standard are well-
established for procedural 3GL programming languages. 

B.1 Equivalence Partitioning 

Introduction 

Equivalence partitioning is based on the premise that the inputs and outputs of a component can be 
partitioned into classes that, according to the component's specification, will be treated similarly by 
the component.  Thus the result of testing a single value from an equivalence partition is considered 
representative of the complete partition. 

Example 

Consider a component, generate_grading, with the following specification: 

The component is passed an exam mark (out of 75) and a coursework (c/w) mark (out of 25), 
from which it generates a grade for the course in the range 'A' to 'D'.  The grade is 
calculated from the overall mark which is calculated as the sum of the exam and c/w marks, 
as follows: 

 greater than or equal to 70 - 'A' 
 greater than or equal to 50, but less than 70 - 'B' 
 greater than or equal to 30, but less than 50 - 'C' 
 less than 30 - 'D' 
  

Where a mark is outside its expected range then a fault message ('FM') is generated.  All 
inputs are passed as integers. 

Initially the equivalence partitions are identified and then test cases derived to exercise the partitions.  
Equivalence partitions are identified from both the inputs and outputs of the component and both 
valid and invalid inputs and outputs are considered. 

The partitions for the two inputs are initially identified.  The valid partitions can be described by: 

0 <= exam mark <= 75 
0 <= coursework mark <= 25 
 

The most obvious invalid partitions based on the inputs can be described by: 

exam mark > 75 
exam mark < 0 
coursework mark > 25 
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coursework mark < 0 
 

Partitioned ranges of values can be represented pictorially, therefore, for the input, exam mark, we 
get: 

 0 75 

0 <=  exam  
mark <= 75 < 0 exam  

mark > 75 exam  
mark  

 

And for the input, coursework mark, we get: 

 0 25 

0 <= 
c/w  

mark <= 25< 0 c/w  
mark > 25 c/w  

mark  

 

Less obvious invalid input equivalence partitions would include any other inputs that can occur not so 
far included in a partition, for instance, non-integer inputs or perhaps non-numeric inputs.  So, we 
could generate the following invalid input equivalence partitions: 

exam mark = real number (a number with a fractional part) 
exam mark = alphabetic 
coursework mark = real number 
coursework mark = alphabetic 
 

Next, the partitions for the outputs are identified.  The valid partitions are produced by considering 
each of the valid outputs for the component:  

'A'  is induced by  70 <= total mark <= 100  
'B'  is induced by  50 <= total mark < 70  
'C'  is induced by  30 <= total mark < 50  
'D'  is induced by  0 <= total mark < 30  
'Fault Message'  is induced by  total mark > 100  
'Fault Message'  is induced by  total mark < 0  
 

where total mark = exam mark + coursework mark.  Note that 'Fault Message' is considered as a valid 
output as it is a specified output. 

The equivalence partitions and boundaries for total mark are shown pictorially below: 

 0 30 

0 <=  
total  
mark < 30 < 0 total  

mark 30 <=  total  
mark < 50 

50 

70 100 

70 <=  total  
mark <= 100 total  

mark > 100 

50 

50 <=  
total  
mark < 70 

(cont.  
from  
above) 

(cont.  
below) 

 

An invalid output would be any output from the component other than one of the five specified.  It is 
difficult to identify unspecified outputs, but obviously they must be considered as if we can cause one 
then we have identified a flaw with either the component, its specification, or both.  For this example 
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three unspecified outputs were identified and are shown below.  This aspect of equivalence 
partitioning is very subjective and different testers will inevitably identify different partitions which 
they feel could possibly occur. 

output  = 'E' 
output  = 'A+' 
output  = 'null' 
 

Thus the following nineteen equivalence partitions have been identified for the component 
(remembering that for some of these partitions a certain degree of subjective choice was required, and 
so a different tester would not necessarily duplicate this list exactly): 

0 <= exam mark <= 75 
exam mark > 75 
exam mark < 0 
0 <= coursework mark <= 25 
coursework mark > 25 
coursework mark < 0 
exam mark = real number 
exam mark = alphabetic 
coursework mark = real number 
coursework mark = alphabetic 
70 <= total mark <= 100  
50 <= total mark < 70  
30 <= total mark < 50  
0 <= total mark < 30  
total mark > 100  
total mark < 0 
output  = 'E' 
output  = 'A+' 
output  = 'null' 

Having identified all the partitions then test cases are derived that 'hit' each of them.  Two distinct 
approaches can be taken when generating the test cases.  In the first a test case is generated for each 
identified partition on a one-to-one basis, while in the second a minimal set of test cases is generated 
that cover all the identified partitions. 

The one-to-one approach will be demonstrated first as it can make it easier to see the link between 
partitions and test cases.  For each of these test cases only the single partition being targetted is stated 
explicitly.  Nineteen partitions were identified leading to nineteen test cases. 

The test cases corresponding to partitions derived from the input exam mark are: 

Test Case 1 2 3 

Input (exam mark) 44 -10 93 

Input (c/w mark) 15 15 15 

total mark (as calculated) 59 5 108 

Partition tested (of exam mark) 0 <= e <= 75 e < 0 e > 75 

Exp. Output 'B' 'FM' 'FM' 
 
Note that the input coursework (c/w) mark has been set to an arbitrary valid value of 15. 
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The test cases corresponding to partitions derived from the input coursework mark are: 

Test Case 4 5 6 

Input (exam mark) 40 40 40 

Input (c/w mark) 8 -15 47 

total mark (as calculated) 48 25 87 

Partition tested (of c/w mark) 0 <= c <= 25 c < 0 c > 25 

Exp. Output 'C' 'FM' 'FM' 
 
Note that the input exam mark has been set to an arbitrary valid value of 40. 

The test cases corresponding to partitions derived from possible invalid inputs are: 

Test Case 7 8 9 10 

Input (exam mark) 48.7 q 40 40 

Input (c/w mark) 15 15 12.76 g 

total mark (as calculated) 63.7 not applicable 52.76 not applicable 

Partition tested exam mark = 
 real number 

exam mark = 
 alphabetic 

c/w mark = 
 real number 

c/w mark = 
 alphabetic 

Exp. Output 'FM' 'FM' 'FM' 'FM' 
 
The test cases corresponding to partitions derived from the valid outputs are: 

Test Case 11 12 13 

Input (exam mark) -10 12 32 

Input (c/w mark) -10 5 13 

total mark (as calculated) -20 17 45 

Partition tested (of total 
mark) 

t < 0 0 <= t < 30 30 <= t < 50 

Exp. Output 'FM' 'D' 'C' 
 

Test Case 14 15 16 

Input (exam mark) 44 60 80 

Input (c/w mark) 22 20 30 

total mark (as calculated) 66 80 110 

Partition tested (of total 
mark) 

50 <= t < 70 70 <= t <= 100 t > 100 

Exp. Output 'B' 'A' 'FM' 
 
The input values of exam mark and coursework mark have been derived from the total mark, which is 
their sum. 
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The test cases corresponding to partitions derived from the invalid outputs are: 

Test Case 17 18 19 

Input (exam mark) -10 100 null 

Input (c/w mark) 0 10 null 

total mark (as calculated) -10 110 null+null 

Partition tested (output) 'E' 'A+' 'null' 

Exp. Output 'FM' 'FM' 'FM' 
 

It should be noted that where invalid input values are used (as above, in test cases 2, 3, 5-11, and 16-
19) it may, depending on the implementation, be impossible to actually execute the test case.  For 
instance, in Ada, if the input variable is declared as a positive integer then it will not be possible to 
assign a negative value to it.  Despite this, it is still worthwhile considering all the test cases for 
completeness. 

It can be seen above that several of the test cases are similar, such as test cases 1 and 14, where the 
main difference between them is the partition targetted.  As the component has two inputs and one 
output, each test case actually 'hits' three partitions; two input partitions and one output partition..  
Thus it is possible to generate a smaller 'minimal' test set that still 'hits' all the identified partitions by 
deriving test cases that are designed to exercise more than one partition.   The following test case 
suite of eleven test cases corresponds to the minimised test case suite approach where each test case is 
designed to hit as many new partitions as possible rather than just one.  Note that here all three 
partitions are explicitly identified for each test case. 

Test Case 1 2 3 4 

Input (exam mark) 60 40 25 15 

Input (c/w mark) 20 15 10 8 

total mark (as calculated) 80 55 35 23 

Partition (of exam mark) 0 <= e <= 75 0 <= e <= 75 0 <= e <= 75 0 <= e <= 75 

Partition (of c/w mark) 0 <= c <= 25 0 <= c <= 25 0 <= c <= 25 0 <= c <= 25 

Partition (of total mark) 70 <= t <= 100 50 <= t < 70 30 <= t < 50 0 <= t < 30 

Exp. Output 'A' 'B' 'C' 'D' 
 

Test Case 5 6 7 8 

Input (exam mark) -10 93 60.5 q 

Input (c/w mark) -15 35 20.23 g 

total mark (as calculated) -25 128 80.73 - 

Partition (of exam mark) e < 0 e > 75 e = real number e = alphabetic 

Partition (of c/w mark) c < 0 c > 25 c = real number c = alphabetic 

Partition (of total mark) t < 0 t > 100 70 <= t <= 100 - 

Exp. Output 'FM' 'FM' 'FM' 'FM' 
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Test Case 9 10 11 

Input (exam mark) -10 100 'null' 

Input (c/w mark) 0 10 'null' 

total mark (as calculated) -10 110 null+null 

Partition (of exam mark) e < 0 e > 75 - 

Partition (of c/w mark) 0 <= c <= 25 0 <= c <= 25 - 

Partition (of total mark) t < 0 t > 100 - 

Partition (of output) 'E' 'A+' 'null' 

Exp. Output 'FM' 'FM' 'FM' 
 
The one-to-one and minimised approaches represent the two extremes of a spectrum of approaches to 
equivalence partitioning.  The disadvantage of the one-to-one approach is that it requires more test 
cases and if this causes problems a more minimalist approach can be used.  Normally, however, the 
identification of partitions is far more time consuming than the generation and execution of test cases 
themselves and so any savings made by reducing the size of the test case suite are relatively small 
compared with the overall cost of applying the technique.  The disadvantage of the minimalist 
approach is that in the event of a test failure it can be difficult to identify the cause due to several new 
partitions being exercised at once.  This is a debugging problem rather than a testing problem, but 
there is no reason to make debugging more difficult than it is already. 

Both of the above test case suites achieve 100% equivalence partition coverage as each ensures that 
all nineteen identified partitions are exercised by at least one test case.  Lower levels of coverage 
would be achieved if all the partitions identified are not all exercised.  If all the partitions are not 
identified, then any coverage measure based on this incomplete set of partitions would be misleading. 

B.2 Boundary Value Analysis 

Introduction 

Boundary Value Analysis is based on the following premise.  Firstly, that the inputs and outputs of a 
component can be partitioned into classes that, according to the component's specification, will be 
treated similarly by the component and, secondly, that developers are prone to making errors in their 
treatment of the boundaries of these classes.  Thus test cases are generated to exercise these 
boundaries. 

Example 

Consider a component, generate_grading, with the following specification: 

The component is passed an exam mark (out of 75) and a coursework (c/w) mark (out of 25), 
from which it generates a grade for the course in the range 'A' to 'D'.  The grade is 
calculated from the overall mark which is calculated as the sum of the exam and c/w marks, 
as follows: 

 greater than or equal to 70 - 'A' 
 greater than or equal to 50, but less than 70 - 'B' 
 greater than or equal to 30, but less than 50 - 'C' 
 less than 30 - 'D' 
 

Where a mark is outside its expected range then a fault message ('FM') is generated.  All 
inputs are passed as integers. 
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Initially the equivalence partitions are identified, then the boundaries of these partitions are 
identified, and then test cases are derived to exercise the boundaries.  Equivalence partitions are 
identified from both the inputs and outputs of the component and both valid and invalid inputs and 
outputs are considered. 

0 <= exam mark <= 75 
0 <= coursework mark <= 25 
 

The most obvious invalid partitions can be described by: 

exam mark > 75 
exam mark < 0 
coursework mark > 25 
coursework mark < 0 
 

Partitioned ranges of values can be represented pictorially, therefore, for the input, exam mark, the 
same notation leads to: 

 0 75 

0 <=  exam  
mark <= 75< 0 exam  

mark > 75 exam  
mark  

 
And for the input, coursework mark, we get: 

 0 25 

0 <=  c/w  
mark <= 25< 0 c/w  

mark > 25 c/w  
mark  

 
For each boundary three values are used, one on the boundary itself and one either side of it, the 
smallest significant distance away, as shown below: 

boundary boundary

boundary 
values

boundary 
values  

 
Thus the six test cases derived from the input exam mark are: 

Test Case 1 2 3 4 5 6 

Input (exam mark) -1 0 1 74 75 76 

Input (c/w mark) 15 15 15 15 15 15 

Boundary tested (exam mark) 0 75 

Exp. Output 'FM' 'D' 'D' 'A' 'A' 'FM' 
 
Note that the input coursework (c/w) mark has been set to an arbitrary valid value of 15. 
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The test cases derived from the input coursework mark are thus: 

Test Case 7 8 9 10 11 12 

Input (exam mark) 40 40 40 40 40 40 

Input (c/w mark) -1 0 1 24 25 26 

Boundary tested (c/w mark) 0 25 

Exp. Output 'FM' 'C' 'C' 'B' 'B' 'FM' 
 
Note that the input exam mark has been set to an arbitrary valid value of 40. 

Less obvious invalid input equivalence partitions would include any other inputs that can occur not so 
far included in a partition, for instance, non-integer inputs or perhaps non-numeric inputs.  In order 
to be considered an equivalence partition those values within it must be expected, from the 
specification, to be treated in an equivalent manner by the component.  Thus we could generate the 
following invalid input equivalence partitions: 

exam mark = real number 
exam mark = alphabetic 
coursework mark = real number 
coursework mark = alphabetic 
etc. 
 

Although these are valid equivalence partitions they have no identifiable boundaries and so no test 
cases are derived. 

Next, the partitions and boundaries for the outputs are identified.  The valid partitions are produced 
by considering each of the valid outputs for the component thus:  

'A'  is induced by  70 <= total mark <= 100  
'B'  is induced by  50 <= total mark < 70  
'C'  is induced by  30 <= total mark < 50  
'D'  is induced by  0 <= total mark < 30  
'Fault Message'  is induced by  total mark > 100  
'Fault Message'  is induced by  total mark < 0  
 

where total mark = exam mark + coursework mark. 

'Fault Message' is considered here as it is a specified output.  The equivalence partitions and 
boundaries for total mark are shown below: 

 0 30 

0 <= 
total  
mark < 30 < 0 total  

mark 30 <=  total  
mark < 50 

50 

70 100 

70 <= total  
mark <= 100 total  

mark > 100 

50 

50 <=  total  
mark < 70 

(cont.  
from  
above) 

(cont.  
below) 
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Thus the test cases derived from the valid outputs are: 

Test Case 13 14 15 16 17 18 19 20 21 

Input (exam mark) -1 0 0 29 15 6 24 50 26 

Input (c/w mark) 0 0 1 0 15 25 25 0 25 

total mark (as calculated) -1 0 1 29 30 31 49 50 51 

Boundary tested (total mark) 0 30 50 

Exp. Output 'FM' 'D' 'D' 'D' 'C' 'C' 'C' 'B' 'B' 
 

Test Case 22 23 24 25 26 27 

Input (exam mark) 49 45 71 74 75 75 

Input (c/w mark) 20 25 0 25 25 26 

total mark (as calculated) 69 70 71 99 100 101 

Boundary tested (total mark) 70 100 

Exp. Output 'B' 'A' 'A' 'A' 'A' 'FM' 
 
The input values of exam mark and coursework mark have been derived from the total mark, which is 
their sum. 

An invalid output would be any output from the component other than one of the five specified.  It is 
difficult to identify unspecified outputs, but obviously they must be considered as if we can cause one 
then we have identified a flaw with either the component, its specification, or both.  For this example 
three unspecified outputs were identified ('E', 'A+', and 'null'), but it is not possible to group these 
possible outputs into ordered partitions from which boundaries can be identified and so no test cases 
are derived. 

So far several partitions have been identified that appear to be bounded on one side only.  These are: 

exam mark > 75 
exam mark < 0 
coursework mark > 25 
coursework mark < 0 
total mark > 100  
total mark < 0 
 

In fact these partitions are bounded on their other side by implementation-dependent maximum and 
minimum values.  For integers held in sixteen bits these would be 32767 and -32768 respectively.   

Thus, the above partitions can be more fully described by: 

75 < exam mark <= 32767 
-32768 <= exam mark < 0 
25 < coursework mark <= 32767 
-32768 <= coursework mark < 0 
100 < total mark <= 32767  
-32768 <= total mark < 0 
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It can be seen that by bounding these partitions on both sides a number of additional boundaries are 
identified, which must be tested.  This leads to the following additional test cases: 

Test Case 28 29 30 31 32 33 

Input (exam mark) 32766 32767 32768 -32769 -32768 -32767 

Input (c/w mark) 15 15 15 15 15 15 

Boundary tested (exam mark) 32767 -32768 

Exp. Output 'FM' 'FM' 'FM' 'FM' 'FM' 'FM' 

 

Test Case 34 35 36 37 38 39 

Input (exam mark) 40 40 40 40 40 40 

Input (c/w mark) 32766 32767 32768 -32769 -32768 -32767 

Boundary tested (c/w mark) 32767 -32768 

Exp. Output 'FM' 'FM' 'FM' 'FM' 'FM' 'FM' 
 

Test Case 40 41 42 43 44 45 

Input (exam mark) 16383 32767 1 0 -16384 -32768 

Input (c/w mark) 16383 0 32767 -32767 -16384 -1 

total mark (as calculated) 32766 32767 32768 -32767 -32768 -32769 

Boundary tested (total mark) 32767 -32768 

Exp. Output 'FM' 'FM' 'FM' 'FM' 'FM' 'FM' 
 

It should be noted that where invalid input values are used (as above, in test cases 1, 6, 7, 12, 13, and 
27-45) it may, depending on the implementation, be impossible to actually execute the test case.  For 
instance, in Ada, if the input variable is declared as a positive integer then it will not be possible to 
assign a negative value to it.  Despite this, it is still worthwhile considering all the test cases for 
completeness. 

The above test case suite achieves 100% boundary value coverage as it ensures that all identified 
boundaries are exercised by at least one test case.  Lower levels of coverage would be achieved if all 
the boundaries identified are not all exercised.  If all the boundaries are not identified, then any 
coverage measure based on this incomplete set of boundaries would be misleading. 

B.3 State Transition Testing 

Introduction 

This black box technique is based upon an analysis of the specification of the component to model its 
behaviour by state transitions.  We illustrate the technique by means of a worked example.  Naturally, 
the technique is only effective to the extent that the model captures the specification of the 
component. 
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Example 

Consider a component, manage_display_changes, with the following specification: 

The component responds to input requests to change an externally held display mode for a 
time display device.  The external display mode can be set to one of four values: Two 
correspond to displaying either the time or the date, and the other two correspond to modes 
used when altering either the time or date. 

There are four possible input requests:  'Change Mode', 'Reset', 'Time Set' and 'Date Set'.  A 
'Change Mode' input request shall cause the display mode to move between the 'display 
time' and 'display date' values.  If the display mode is set to 'display time' or 'display date' 
then a 'Reset' input request shall cause the display mode to be set to the corresponding 'alter 
time' or 'alter date' modes.  The 'Time Set' input request shall cause the display mode to 
return to 'display time' from 'alter time' while similarly the 'Date Set' input request shall 
cause the display mode to return to 'display date' from 'alter date'. 

A state model is produced for the 
component to identify its states, 
transitions, and their events and actions.  
State transition diagrams (STD) are 
commonly used as state models and their 
notation is briefly illustrated opposite. 

Events are always caused by input.  
Similarly, actions are likely to cause 
output.  The output from an action may be 
essential in order to identify the current 
state of the component.  A transition is 
determined by the current state and an 
event and is normally labelled simply with 
the event and action. 

event

action

input

output
transition

State 2

State 1

 

 
The STD for the component manage_display_changes is shown in figure B.3. 
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DISPLAYING 
TIME (S1)

DISPLAYING 
DATE (S2)

CHANGING 
TIME (S3)

CHANGING 
DATE (S4)

'change 
mode' (CM)

'reset' (R)

'reset' (R)

'time set' (TS)

'date set' (DS)

'change 
mode' (CM)

alter date (AD)

alter time (AT)

display 
date (D)display 

time (T)

display date (D)

display time (T)

 

Figure B.3 STD for Manage_Display_Changes 

 

Test cases are initially derived from the state transition diagram to exercise each of the possible 
transitions (using the abbreviated STD labels): 

Test Case 1 2 3 4 5 6 

Start State S1 S1 S3 S2 S2 S4 

Input CM R TS CM R DS 

Expected Output D AT T T AD D 

Finish State S2 S3 S1 S1 S4 S2 

 
This indicates that for test case 1 the starting state is DISPLAYING TIME (S1), the input is 'change 
mode' (CM), the expected output is 'display date' (D), and the finish state is DISPLAYING DATE 
(S2). 

This set of six test cases exercises each of the possible transitions and so achieves 0-switch coverage 
[Chow].  Tests written to achieve this level of coverage are limited in their ability to detect some types 
of faults because although they will detect the most obvious incorrect transitions and outputs, they 
will not detect more subtle faults that are only detectable through exercising sequences of transitions. 
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Tests written to achieve the next level of coverage, 1-switch, exercise all the possible sequential pairs 
of transitions, of which there are ten in the manage_display_changes component: 

Test Case 1 2 3 4 5 6 7 8 9 10 

Start State S1 S1 S1 S3 S3 S2 S2 S2 S4 S4 

Input CM CM R TS TS CM CM R DS DS 

Exp. Output D D AT T T T T AD D D 

Next State S2 S2 S3 S1 S1 S1 S1 S4 S2 S2 

Input CM R TS CM R CM R DS CM R 

Exp. Output T AD T D AT D AT D T AD 

Finish State S1 S4 S1 S2 S3 S2 S3 S2 S1 S4 

 
This indicates that test case 1 comprises two transitions.  For the first transition the starting state is 
DISPLAYING TIME (S1), the initial input is 'change mode' (CM), the intermediate expected output 
is display date (D), and the next state is DISPLAYING DATE (S2).  For the second transition, the 
second input is 'change mode' (CM), the final expected output is display time (T), and the finish state 
is DISPLAYING TIME (S1). 

Note that intermediate states, and the inputs and outputs for each transition, are explicitly defined. 

Longer sequences of transitions can be tested to achieve higher and higher levels of switch coverage, 
dependent on the level of test thoroughness required. 

A limitation of the test cases derived to achieve switch coverage is that they are designed to exercise 
only the valid transitions in the component.  A more thorough test of the component will also attempt 
to cause invalid transitions to occur.  The STD only explicitly shows the valid transitions (all 
transitions not shown are considered invalid).  A state model that explicitly shows both valid and 
invalid transitions is the state table.  The notation used for state tables is briefly described below: 

 Input 1 Input 2 etc. 

Start State 1 Entry A Entry B etc. 

Start State 2 Entry C Entry D etc. 

etc. etc. etc. etc. 
 
where Entry X = Finish State / Output  for the given start state and input. 

The state table for the manage_display_changes  component is shown below: 

 CM R TS DS 

S1 S2/D S3/AT S1/N S1/N 

S2 S1/T S4/AD S2/N S2/N 

S3 S3/N S3/N S1/T S3/N 

S4 S4/N S4/N S4/N S2/D 
 
Any entry where the state remains the same and the output is shown as null (N) represents a null 
transition, where any actual transition that can be induced will represent a failure.  It is the testing of 
these null transitions that is ignored by test sets designed just to achieve switch coverage.  Thus a 
more complete test set will test both possible transitions and null transitions, which means testing the 
response of the component to all possible inputs in all possible states.  The state table provides an 
ideal means of directly deriving this set of test cases. 
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There are 16 entries in the table above representing each of the four possible inputs that can occur in 
each of the four possible states, making 16 test cases which can be read from the state table as shown 
below: 

 CM R TS DS 

S1 S2/D 
(Test Case 1) 

S3/AT 
(Test Case 2) 

S1/N 
(Test Case 3) 

S1/N 
(Test Case 4) 

S2 S1/T 
(Test Case 5) 

S4/AD 
(Test Case 6) 

S2/N 
(Test Case 7) 

S2/N 
(Test Case 8) 

S3 S3/N 
(Test Case 9) 

S3/N 
(Test Case 10) 

S1/T 
(Test Case 11) 

S3/N 
(Test Case 12) 

S4 S4/N 
(Test Case 13) 

S4/N 
(Test Case 14) 

S4/N 
(Test Case 15) 

S2/D 
(Test Case 16) 

 
which corresponds to: 

Test Case 1 2 3 4 5 .... .   . .... 12 13 14 15 16 

Start State S1 S1 S1 S1 S2 .... .   . .... S3 S4 S4 S4 S4 

Input CM R TS DS CM .... .   . .... DS CM R TS DS 

Exp. Output D AT N N T .... .   . .... N N N N D 

Finish State S2 S3 S1 S1 S1 .... .   . .... S3 S4 S4 S4 S2 

 
If the above test cases are compared with those produced to achieve 0-switch coverage then it can be 
seen that by also testing the null transitions an extra 10 test cases are created (3,4,7,8,9,10,12,13,14 
and 15). 

B.4 Cause Effect Graphing 

Introduction 

This black box technique is based upon an analysis of the specification of the component to model its 
behaviour by means of causes and effects.  We illustrate the technique by means of a worked example.  
Naturally, the technique is only effective to the extent that the model captures the specification of the 
component. 

Example 

Take a cheque debit function whose inputs are debit amount, account type and current balance  and 
whose outputs are new balance and action code.   Account type may be postal ('p') or counter ('c').  
The action code may be 'D&L', 'D', 'S&L' or 'L', corresponding to 'process debit and send out letter', 
'process debit only', 'suspend account and send out letter' and 'send out letter only' respectively.  The 
function has the following specification: 

If there are sufficient funds available in the account or the new balance would be within 
the authorised overdraft limit then the debit is processed.  If the new balance would 
exceed the authorised overdraft limit then the debit is not processed and if it is a postal 
account it is suspended.  Letters are sent out for all transactions on postal accounts and 
for non-postal accounts if there are insufficient funds available (i.e. the account would 
no longer be in credit).  
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The conditions are: 
C1 New balance in credit 
C2 New balance overdraft, but within authorised limit 
C3 Account is postal 
 

The actions are: 
A1 Process debit 
A2 Suspend account 
A3 Send out letter 
 

A cause-effect graph shows the relationship between the conditions and actions in a notation similar 
to that used by designers of hardware logic circuits.  The specification is modelled by the graph 
shown in Figure B.4. 

 

           
Figure B.4: Cause-effect graph 

The code graph is then recast in terms of a decision table.  Each column of the decision table is a rule.  
The table comprises two parts.  In the first part each rule is tabulated against the conditions.  A 'T' 
indicates that the condition must be TRUE for the rule to apply and an 'F' indicates that the condition 
must be FALSE for the rule to apply.  In the second part, each rule is tabulated against the actions.  A 
'T' indicates that the action will be performed; an 'F' indicates that the action will not be performed; 
an asterisk (*) indicates that the combination of conditions is infeasible and so no actions are defined 
for the rule. 

The example has the following decision table: 

Rules: 1 2 3 4 5 6 7 8 

C1: New balance in credit F F F F T T T T 

C2: New balance overdraft,  
but within authorised limit F F T T F F T T 

C3: Account is postal F T F T F T F T 

A1: Process debit F F T T T T * * 

A2: Suspend account F T F F F F * * 

A3: Send out letter T T T T F T * * 
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The following test cases would be required to provide 100% cause-effect coverage, and correspond to 
the rules in the decision table above (no test cases are generated for rules 7 and 8 as they are 
infeasible): 

 CAUSES EFFECTS 

test 
case 

account  
type 

overdraft 
limit 

current 
balance 

debit  
amount 

new 
balance 

action 
code 

1 'c' £100 -£70 £50 -£70 'L' 

2 'p' £1500 £420 £2000 £420 'S&L' 

3 'c' £250 £650 £800 -£150 'D&L' 

4 'p' £750 -£500 £200 -£700 'D&L' 

5 'c' £1000 £2100 £1200 £900 'D' 

6 'p' £500 £250 £150 £100 'D&L' 

 

B.5 Syntax Testing 

Introduction 

This black box technique is based upon an analysis of the specification of the component to model its 
behaviour by means of a description of the input via its syntax.  We illustrate the technique by means 
of a worked example.  The technique is only effective to the extent that the syntax as defined 
corresponds to the required syntax. 

Example 

Consider a component that simply checks whether an input float_in conforms to the syntax of a 
floating point number, float (defined below).  The component outputs check_res, which takes the 
form 'valid' or 'invalid' dependent on the result of its check. 

Here is a representation of the syntax for the floating point number, float in Backus Naur Form 
(BNF) : 

float = int "e" int. 
int = ["+"|"-"] nat. 
nat = {dig}. 
dig = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9". 
 

Terminals are shown in quotation marks; these are the most elementary parts of the syntax - the 
actual characters that make up the input to the component.  | separates alternatives. [] surrounds an 
optional item, that is, one for which nothing is an alternative.  {} surrounds an item which may be 
iterated one or more times. 
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B.5.1 Test Cases with Valid Syntax  

The first step is to derive the options from the syntax.  Each option is followed by a label, in the form 
[opt_1], [opt_2], etc., to enable it to be identified later. 

float has no options. 
int has three options: nat [opt_1], "+" nat [opt_2] and "-" nat [opt_3]. 
nat has two options: a single digit number [opt_4] and a multiple digit number [opt_5]. 
dig has ten options: one for each digit [opt_6 to opt_15]. 
 

There are thus fifteen options to be covered.  The next step is to construct test cases to cover the 
options. 

The following test cases cover them all: 

test case float_in option(s) executed check_res 

1 3e2 opt_1 'valid' 

2 +2e+5 opt_2 'valid' 

3 -6e-7 opt_3 'valid' 

4 6e-2 opt_4 'valid' 

5 1234567890e3 opt_5 'valid' 

6 0e0 opt_6 'valid' 

7 1e1 opt_7 'valid' 

8 2e2 opt_8 'valid' 

9 3e3 opt_9 'valid' 

10 4e4 opt_10 'valid' 

11 5e5 opt_11 'valid' 

12 6e6 opt_12 'valid' 

13 7e7 opt_13 'valid' 

14 8e8 opt_14 'valid' 

15 9e9 opt_15 'valid' 
 

This is by no means a minimal test set to exercise the 15 options (it can be reduced to just three test 
cases, for example, 2, 3 and 5 above), and some test cases will exercise more options than the single 
one listed in the 'options executed' column.  Each option has been treated separately here to aid 
understanding of their derivation.  This approach may also contribute to the ease with which the 
causes of faults are located. 

B.5.2 Test Cases with Invalid Syntax  

The first step is to construct a checklist of generic mutations.  A possible checklist is: 

m1. introduce an invalid value for an element; 

m2. substitute an element with another defined element; 

m3. miss out a defined element; 

m4. add an extra element. 
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These generic mutations are applied to the individual elements of the syntax to yield specific 
mutations.  The elements, represented in the form el_1, el_2, etc., of the syntax for float can be 
identified from the BNF representation as shown below: 

float  = int "e" int.     el_1  =   el_2 el_3 el_4. 
int  = ["+"|"-"] nat.     el_5  =   el_6 el_7. 
nat = {dig}.     el_8  =   el_9. 
dig = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9".  el_10  =   el_11. 
 
[“+”|”-”] has been treated as a single element because the mutation of optional items separately does 
not create test cases with invalid syntax (using these generic mutations). 

The next step is to construct test cases to cover the mutations: 

test case float_in mutation element check_res 

1 xe0 m1 x for el_2 'invalid' 

2 0x0 m1 x for el_3 'invalid' 

3 0ex m1 x for el_4 'invalid' 

4 x0e0 m1 x for el_6 'invalid' 

5 +xe0 m1 x for el_7 'invalid' 

6 ee0 m2 el_3 for el_2 'invalid' 

7 +e0 m2 el_6 for el_2 'invalid' 

8 000 m2 el_2 for el_3 'invalid' 

9 0+0 m2 el_6 for el_3 'invalid' 

10 0ee m2 el_3 for el_4 'invalid' 

11 0e+ m2 el_6 for el_4 'invalid' 

12 e0e0 m2 el_3 for el_6 'invalid' 

13 +ee0 m2 el_3 for el_7 'invalid' 

14 ++e0 m2 el_6 for el_7 'invalid' 

15 e0 m3 el_2 'invalid' 

16 00 m3 el_3 'invalid' 

17 0e m3 el_4 'invalid' 

18 y0e0 m4 y in el_1 'invalid' 

19 0ye0 m4 y in el_1 'invalid' 

20 0ey0 m4 y in el_1 'invalid' 

21 0e0y m4 y in el_1 'invalid' 

22 y+0e0 m4 y in el_5 'invalid' 

23 +y0e0 m4 y in el_5 'invalid' 

24 +0yeo m4 y in el_5 'invalid' 
 
Some of the mutations are indistinguishable from correctly formed expansions and these have been 
discarded.  For example, the generic mutation m2 (el_2 for el_4) generates correct syntax as m2 is 
“substitute an element with another defined element” and el_2 and el_4 are the same (int). 

Some of the remaining mutations are indistinguishable from each other and these are covered by a 
single test case. For example, applying the generic mutation m1 (“introduce an invalid value for an 
element”) by replacing el_4, which should be an integer, with “+” creates the form “0e+”.  This is the 
same input as generated for test case 11 above. 
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Many more test cases can be created by making different choices when using single mutations, or 
combining mutations. 

B.5.3 Syntax Test Coverage 

No test coverage measures are defined for syntax testing.  Any measures of coverage would be based 
on the rules for generating valid syntax options and the checklist for generating test cases with invalid 
syntax.  Neither the rules nor the checklist are definitive and so any syntax test coverage measures 
based on a particular set will be specific to that set of rules and checklist.  

 

B.6 Statement Testing and Coverage 

Introduction 

This structural test technique is based upon the decomposition of the component into constituent 
statements. 

Example 

The two principal questions to answer are: 

- what is a statement? 
- which statements are executable? 
 

In general a statement should be an atomic action, that is a statement should be executed completely 
or not at all.  For instance: 

IF a THEN b ENDIF 
 
is considered as more than one statement because b may or may not be executed depending upon the 
condition a.  The definition of statement used for statement testing need not be the one used in the 
language definition. 

We would expect statements which are associated with machine code to be regarded as executable.  
For instance, we would expect all of the following to be regarded as executable: 

- assignments; 
- loops and selections; 
- procedure and function calls; 
- variable declarations with explicit initialisations; 
- dynamic allocation of variable storage on a heap. 
 

However, most other variable declarations can be regarded as non executable. 

Consider, the following C code: 

a; 
if (b) { 
 c; 
 } 
d; 

Any test case with b TRUE will achieve full statement coverage.  Note that full statement coverage 
can be achieved without exercising with b FALSE. 
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B.7 Branch/Decision Testing 

Branch and Decision Coverage are closely related.  For components with one entry point 100% 
Branch Coverage is equivalent to 100% Decision Coverage, although lower levels of coverage may 
not be the same.  Both levels of coverage will be illustrated with one example: 

The component shall determine the position of a word in a table of words ordered 
alphabetically.  Apart from the word and table, the component shall also be passed the 
number of words in the table to be searched.  The component shall return the position of the 
word in the table (starting at zero) if it is found, otherwise it shall return “-1”. 

The corresponding code is drawn from [K&R].  The three decisions have been highlighted. 

  int binsearch (char *word, struct key tab[], int n) {  
   int cond; 
   int low, high, mid; 
   low = 0;  
   high = n - 1; 
   while (low <= high) { 
    mid = (low+high) / 2; 
    if ((cond = strcmp(word, tab[mid].word)) < 0) 
     high = mid - 1; 
    else if (cond > 0) 
     low = mid + 1; 
    else 
     return mid; 
   } 
   return -1; 
  } 
 
In this example each decision has two outcomes corresponding to the true and false values of the 
conditions.  It is generally possible for a decision to have more than two outcomes. 

Branch coverage may be demonstrated through coverage of the control flow graph of the program.  
The first step to constructing a control flow graph for a procedure is to divide it into basic blocks.  
These are sequences of instructions with no branches into the block (except to the beginning) and no 
branches out of the block (except at the end).  The statements in a basic block are guaranteed to be 
executed together or not at all.  The program above has the following basic blocks. 

 int binsearch (char *word, struct key tab[], int n) {  
  int cond; 
  int low, high, mid; 
 
B1  low = 0;  
  high = n - 1;  
B2  while (low <= high) {  
B3   mid = (low+high) / 2  
   if ((cond = strcmp(word, tab[mid].word)) < 0)   
B4    high = mid - 1;  
B5   else if (cond > 0)   
B6    low = mid + 1;   
B7   else   
    return mid;  
B8  }    
B9  return -1;  
 } 
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A control flow graph may be constructed by making each basic block a node and drawing an arc for 
each possible transfer of control from one basic block to another.  These are the possible transfers of 
control: 

B1 ->?? 2 
B2 -> B3 
B2 -> B9 

B3 -> B4 
B3 -> B5 
B4 -> B8 

B5 -> B6 
B5 -> B7 

B6 -> B8 
B8 -> B2 

 

This results in the graph 
presented in figure B.7.  The 
graph has one entry point, B1, 
and two exit points, B7 and B9. B1 B2 B3 B4 B8

B9 B5 B6

B7

 

Figure B.7: Control flow graph for binsearch 

 
Of course, the above control flow graph would not necessarily be constructed by hand, but a tool 
would normally be used to show which decisions/branches have been executed. 

The decisions are given by the basic blocks having more than one exit arrow, namely B2, B3 and B5.  
Since each of these three blocks have two exits, we have six decisions to consider. 

The branches are given by the arrows in the control flow graph; 10 in total. 

For both branches and decisions any individual test of the component will exercise a path and hence 
potentially many decisions and branches. 

Consider a test case which executes the path B1 -> B2 -> B9.  This case arises when n=0, that is, 
when the table being searched has no entries.  This path executes one decision (B2 -> B9) and hence 
provides 1/6 = 16.7% coverage.  The path executes 2 out of the 10 branches, giving 20% coverage 
(which is not the same as the coverage for decisions). 

Consider now a test case which executes the path: 

B1->B2->B3->B4->B8->B2->B3->B5->B6->B8->B2->B3->B5->B7 

This path arises when the search first observes that the entry is in the first half of the table, then the 
second half of that (i.e., 2nd quarter) and then finds the entry.  Note that the two test cases provide 
100% decision and branch coverage. 
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These test cases are shown below: 

test  inputs decisions exercised expected  
case word tab n (underlined) outcome 

1 chas ‘empty 
table’ 

0 B1  »  B2 »  B9 -1 

2 chas alf 
bert 
chas 
dick 
eddy 
fred 
geoff 

7  B1  »  B2  »  B3  »  B4   »  B8  »  
B2  »  B3  »  B5  »  B6  »  B8  »  

B2  »  B3  »  B5  »  B7 

2 

 

Branch and decision coverage are both normally measured using a software tool. 

B.8 Data Flow Testing 

Introduction 

Data flow testing is a structural test technique which aims to execute subpaths from points where each 
variable in a component is defined to points where it is referenced.  These subpaths are known as 
definition-use pairs (du-pairs).  The different data flow coverage criteria require different du-pairs 
and subpaths to be executed.  Test sets are generated here to achieve 100% coverage (where possible) 
for each of those criteria. 

Example 

Consider the data flow testing of the following component in Ada: 

procedure Solve_Quadratic(A, B, C: in Float; Is_Complex: out 
Boolean; R1, R2: out Float) is 

 
-- Is_Complex is true if the roots are not real.  
-- If the two roots are real, they are produced in R1, R2.  

Discrim : Float := B*B - 4.0*A*C;   -- 1 
R1, R2: Float;   -- 2 

 begin    -- 3 
if Discrim < 0.0 then   -- 4 
 Is_Complex := true;   -- 5 
else   -- 6 
 Is_Complex := false;   -- 7 

  end if;   -- 8 
if not Is_Complex then   -- 9 

R1 := (-B + Sqrt(Discrim))/ (2.0*A);  -- 10 
R2 := (-B - Sqrt(Discrim))/ (2.0*A);  -- 11 

  end if;   -- 12 
 end Solve_Quadratic;   -- 13 
 
Note that the second line is not a definition (of R1 and R2) but a declaration.  (For languages with 
default initialisation, it would be a definition.) 

The first step is to list the variables used in the component.  These are: A, B, C, Discrim, 
Is_Complex, R1 and R2. 
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Next, each occurrence of a variable in the component is listed and assigned a category (definition, 
predicate-use or computation-use): 
 

 category 

line definition c-use p-use 

0 A,B,C   

1 Discrim A,B,C  

2    

3    

4   Discrim 

5 Is_Complex   

6    

7 Is_Complex   

8    

9   Is_Complex 

10 R1 A,B,Discrim  

11 R2 A,B,Discrim  

12    

13    
 
 
The next step is to identify the du-pairs and their type (c-use or p-use), by identifying links from each 
entry in the definition column to each entry for that variable in the c-use or p-use column.  Note that 
we cannot form any definition-use pair for R1 and R2 since they only have a definition within the 
component. 

definition-use pair variable(s) 

(start line -> end line) c-use p-use 

0 ---> 1 A,B,C  

0 ---> 10 A,B  

0 ---> 11 A,B  

1 ---> 4  Discrim 

1 ---> 10 Discrim  

1 ---> 11 Discrim  

5 ---> 9  Is_Complex 

7 ---> 9  Is_Complex 
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B.8.1 All-definitions 

To achieve 100% All-definitions data flow coverage at least one subpath from each variable definition 
to some use of that definition (either p-use and c-use) must be executed.  The following test set would 
satisfy this requirement: 

 All Definitions INPUTS EXPECTED OUTCOME 

test case variable(s) du-pair subpath A B C Is_Complex R1 R2 

1 A,B,C 0 --> 1 0-1 1 1 1 T unass. unass. 

2 Discrim 1 --> 4 1-4 1 1 1 T unass. unass. 

3 Is_Complex 5 --> 9 5- 9 1 1 1 T unass. unass. 

4 Is_Complex 7 --> 9 7- 9 1 2 1 F -1 -1 

 

Note that several of the test cases satisfy the requirement for more than one variable, this will apply to 
each of the subsequent test sets as well.  It can also be seen that the same test inputs satisfy the 
subpath execution criteria for several of the du-pairs (again this will apply to the subsequent test sets 
as well). 

B.8.2 All-c-uses 

To achieve 100% 'All-c-uses data flow coverage at least one subpath from each variable definition to 
every c-use of that definition must be executed.  The following test set would satisfy this requirement: 

 All-c-uses INPUTS EXPECTED OUTCOME 

test case variable(s) du-pair subpath A B C Is_Complex R1 R2 

1 A,B,C 0 --> 1 0-1 1 1 1 T unass. unass. 

2 A,B 0 --> 10 0-1-4-7-9-10 1 2 1 F -1 -1 

3 A,B 0 --> 11 0-1-4-7-9-10-11 1 2 1 F -1 -1 

4 Discrim 1 --> 10 1-4-7-9-10 1 2 1 F -1 -1 

5 Discrim 1 --> 11 1-4-7-9-10-11 1 2 1 F -1 -1 

 

B.8.3 All-p-uses 

To achieve 100% All-p-uses data flow coverage at least one subpath from each variable definition to 
every p-use of that definition must be executed.  The following test set would satisfy this requirement: 

 All-p-uses INPUTS EXPECTED OUTCOME 

test case variable(s) du-pair subpath A B C Is_Complex R1 R2 

1 Discrim 1 --> 4 1-4 1 1 1 T unass. unass. 

2 Is_Complex 5 --> 9 5- 9 1 1 1 T unass. unass. 

3 Is_Complex 7 --> 9 7- 9 1 2 1 F -1 -1 
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B.8.4 All-uses 

To achieve 100% All-uses data flow coverage at least one subpath from each variable definition to 
every use of that definition (both p-use and c-use) must be executed.  The following test set would 
satisfy this requirement: 

 All-uses / All du-paths INPUTS EXPECTED OUTCOME 

test case variable(s) d-u pair subpath A B C Is_Complex R1 R2 

1 A,B,C 0 --> 1 0-1 1 1 1 T unass. unass. 

2 A,B 0 --> 10 0-1-4-7-9-10 1 2 1 F -1 -1 

3 A,B 0 --> 11 0-1-4-7-9-10-11 1 2 1 F -1 -1 

4 Discrim 1 --> 4 1-4 1 1 1 T unass. unass. 

5 Discrim 1 --> 10 1-4-7-9-10 1 2 1 F -1 -1 

6 Discrim 1 --> 11 1-4-7-9-10-11 1 2 1 F -1 -1 

7 Is_Complex 5 --> 9 5- 9 1 1 1 T unass. unass. 

8 Is_Complex 7 --> 9 7- 9 1 2 1 F -1 -1 

 

B.8.5 All-du-paths 

To achieve 100% All-du-paths data flow coverage every 'simple subpath' from each variable 
definition to every use of that definition must be executed.  This differs from All-uses in that every 
simple subpath between the du-pairs must be executed.   There are just two subpaths through the 
component that are not already identified in the test cases for All-Uses.  These are 0-1-4-5-9-10 and 
1-4-5-9-10.  Both of these subpaths are infeasible and so no test cases can be generated to exercise 
them. 

This form of testing needs to define the data objects considered. Tools will typically regard an array 
or record as a single data item rather than as a composite item with many constituents. Ignoring the 
constituents of composite objects reduces the effectiveness of data flow testing. 

B.9 / B.10 / B.11 Condition Testing 

Introduction 

Branch Condition Testing, Branch Condition Combination Testing, and Modified Condition Decision 
Testing are closely related, as are the associated coverage measures. For convenience, these test case 
design and test measurement techniques are collectively referred to as condition testing. 

Condition testing is based upon an analysis of the conditional control flow within the component and 
is therefore a form of structural testing. 

Example 

Consider the following fragment of code: 

 
if A or (B and C) then 
 do_something; 
else 
 do_something_else; 
end if; 
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The Boolean operands within the decision condition are A, B and C. These may themselves be 
comprised of complex expressions involving relational operators. For example, the Boolean operand 
A could be an expression such as X>=Y. However, for the sake of clarity, the following examples 
regard A, B and C as simple Boolean operands. 

Branch Condition Testing and Coverage 

Branch Condition Coverage would require Boolean operand A to be evaluated both TRUE and 
FALSE, Boolean operand B to be evaluated both TRUE and FALSE, and Boolean operand C to be 
evaluated both TRUE and FALSE. 

Branch Condition Coverage may therefore be achieved with the following set of test inputs (note that 
there are alternative sets of test inputs which will also achieve Branch Condition Coverage): 
 

Case A B C 

1 FALSE FALSE FALSE 

2 TRUE TRUE TRUE 
 
Branch Condition Coverage can often be achieved with just two test cases, irrespective of the number 
of actual Boolean operands comprising the condition.  

A further weakness of Branch Condition Coverage is that it can often be achieved without testing 
both the TRUE and FALSE branches of the decision. For example, the following alternative set of test 
inputs achieve Branch Condition Coverage, but only test the TRUE outcome of the overall Boolean 
condition. Thus Branch Condition Coverage will not necessarily subsume Branch Coverage. 

Case A B C 

1 TRUE FALSE FALSE 

2 FALSE TRUE TRUE 
 
Branch Condition Combination Testing and Coverage 

Branch Condition Combination Coverage would require all combinations of Boolean operands A, B 
and C to be evaluated. For the example condition, Branch Condition Combination Coverage can only 
be achieved with the following set of test inputs: 

Case A B C 

1 FALSE FALSE FALSE 

2 TRUE FALSE FALSE 

3 FALSE TRUE FALSE 

4 FALSE FALSE TRUE 

5 TRUE TRUE FALSE 

6 FALSE TRUE TRUE 

7 TRUE FALSE TRUE 

8 TRUE TRUE TRUE 
 
Branch Condition Combination Coverage is very thorough, requiring 2n test cases to achieve 100% 
coverage of a condition containing n Boolean operands. This rapidly becomes unachievable for more 
complex conditions. 
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Modified Condition Decision Testing and Coverage 

Modified Condition Decision Coverage (MCDC) is a pragmatic compromise which requires fewer 
test cases than Branch Condition Combination Coverage. It is widely used in the development of 
avionics software, as required by RTCA/DO-178B.  

Modified Condition Decision Coverage requires test cases to show that each Boolean operand (A, B 
and C) can independently affect the outcome of the decision. This is less than all the combinations (as 
required by Branch Condition Combination Coverage).  

For the example decision condition [A  or (B and C)], we first require a pair of test cases where 
changing the state of A will change the outcome, but B and C remain constant, i.e. that A can 
independently affect the outcome of the condition: 

 
Case A B C Outcome 
A1 FALSE FALSE TRUE FALSE 
A2 TRUE FALSE TRUE TRUE 

 
Similarly for B, we require a pair of test cases which show that B can independently affect the 
outcome, with A and C remaining constant: 

 
Case A B C Outcome 
B1 FALSE FALSE TRUE FALSE 
B2 FALSE TRUE TRUE TRUE 

 
Finally for C we require a pair of test cases which show that C can independently affect the outcome, 
with A and B remaining constant: 

 
Case A B C Outcome 
C1 FALSE TRUE TRUE TRUE 
C2 FALSE TRUE FALSE FALSE 

 
Having created these pairs of test cases for each operand separately, it can be seen that test cases A1 
and B1 are the same, and that test cases B2 and C1 are the same. The overall set of test cases to 
provide 100% MCDC of the example expression is consequently: 

 
Case A B C Outcome 
1  (A1,B1) FALSE FALSE TRUE FALSE 
2  (A2) TRUE FALSE TRUE TRUE 
3  (B2,C1) FALSE TRUE TRUE TRUE 
4  (C2) FALSE TRUE FALSE FALSE 

 
In summary:  

A is shown to independently affect the outcome of the decision condition by test cases 1 and 2;  
B is shown to independently affect the outcome of the decision condition by test cases 1 and 3; 
C is shown to independently affect the outcome of the decision condition by test cases 3 and 4.  
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Note that there may be alternative solutions to achieving MCDC. For example, A could have been 
shown to independently affect the outcome of the condition by the following pair of test cases: 

 
Case A B C Outcome 
A3 FALSE TRUE FALSE FALSE 
A4 TRUE TRUE FALSE TRUE 

 
Test case A3 is the same as test case C2 (or 4) above, but test case A4 is one which has not been 
previously used. However, as MCDC has already been achieved, test case A4 is not required for 
coverage purposes. 

To achieve 100% Modified Condition Decision Coverage requires a minimum of n+1 test cases, and a 
maximum of 2n test cases, where n is the number of Boolean operands within the decision condition. 
In contrast, Branch Condition Combination Coverage requires n2 test cases. MCDC is therefore a 
practical compromise with Branch Condition Combination Coverage where condition expressions 
involve more than just a few Boolean operands. 

Other Boolean Expressions 

One weakness of these condition testing and test measurement techniques is that they are vulnerable 
to the placement of Boolean expressions which control decisions being placed outside of the actual 
decision condition. For example:  

FLAG := A or (B and C); 
if FLAG then 
 do_something; 
else 
 do_something_else; 
end if; 
 
To combat this vulnerability, a practical variation of these condition testing and condition coverage 
techniques is to design tests for all Boolean expressions, not just those used directly in control flow 
decisions. 

Optimised Expressions 

Some programming languages and compilers short circuit the evaluation of Boolean operators. 

For example, the C and C++ languages always short circuit the Boolean "and" (&&) and "or" (||) 
operators, and the Ada language provides special short circuit operators and then and or else.  With 
these examples, when the outcome of a Boolean operator can be determined from the first operand, 
then the second operand will not be evaluated. 

The consequence is that it will be infeasible to show coverage of one value of the second operand. For 
a short circuited "and" operator, the feasible combinations are True:True, True:False and False:X, 
where X is unknown. For a short circuited "or" operator, the feasible combinations are False:False, 
False:True and True:X. 

Other languages and compilers may short circuit the evaluation of Boolean operators in any order.  In 
this case, the feasible combinations are not known.  The degree of short circuit optimisation of 
Boolean operators may depend upon compiler switches or may be outside the user's control. 

Short circuited control forms present no obstacle to Branch Condition Coverage or Modified 
Condition Decision Coverage, but they do obstruct the measurement of Branch Condition 
Combination Coverage. There are situations where it is possible to design test cases which should 
achieve 100% coverage (from a theoretical point of view), but where it is not possible to actually 
measure that 100% coverage has been achieved. 
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Other Branches and Decisions 

The above description of condition testing techniques and condition coverage measures is given in 
terms of branches or decisions which are controlled by Boolean conditions. Other branches and 
decisions, such as multi-way branches (implemented by "case", "switch" or "computed goto" 
statements), and counting loops (implemented by "for" or "do" loops) do not use Boolean conditions, 
and are therefore not addressed by the descriptions. 

There are two options available. 

The first option is to assume that the branch or decision is actually implemented as an equivalent set 
of Boolean conditions (irrespective of how the design is coded), to design test cases which would 
exercise these conditions using one of the condition testing techniques, and to measure coverage as if 
the equivalent Boolean conditions were actually coded. 

The second option is to only use a condition testing test case design technique and a coverage 
measure as a supplement to branch testing and branch or decision coverage. Branch testing will 
address all simple decisions, multi-way decisions, and all loops. Condition testing will then address 
the decisions which include Boolean conditions. 

In practice, a set of test cases which achieves 100% coverage by one of these options will also achieve 
100% coverage by the other option. However, lower levels of coverage cannot be compared between 
the two options. 

B.12 LCSAJ Testing 

Introduction 

An LCSAJ (which stands for Linear Code Sequence And Jump) is defined as a linear sequence of 
executable code commencing either from the start of a program or from a point to which control flow 
may jump and terminated either by a specific control flow jump or by the end of the program. It may 
contain predicates which must be satisfied in order to execute the linear code sequence and 
terminating jump. 

Example 

Some reformatting may be needed to allow LCSAJs to be expressed in terms of line numbers. The 
basic reformatting rule is that each branch must leave from the end of a line and arrive at the start of 
a line. 
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Consider the following program which is designed to categorise positive integers into prime and non-
prime, and to give factors for those which are non-prime. Note that integer division is used, so Num 
DIV 2 will give a value of 2 when Num = 5, for example.  The code on line 5 calculates the 
remainder left after Factor is divided into Num. For example, if Factor is 5 and Num is 13, the 
expression evaluates to 3. For reasons of simplicity, the program makes no checks on the input. 

 
 1 READ (Num); 
 2 WHILE NOT End of File DO 
 3  Prime := TRUE; 
 4  FOR Factor := 2 TO Num DIV 2 DO 
 5   IF Num - (Num DIV Factor)*Factor = 0 THEN 
 6    WRITE (Factor, ` is a factor of', Num);  
 7    Prime := FALSE; 
 8   ENDIF; 
 9  ENDFOR; 
 10  IF Prime = TRUE THEN 
 11   WRITE (Num, ` is prime'); 
 12  ENDIF; 
 13  READ (Num); 
 14 ENDWHILE; 
 15 WRITE (`End of prime number program');  
 
 
Deriving LCSAJs 

To progress methodically, firstly list the table of branches as shown below. These are listed with a 
note of the necessary conditions to satisfy them. 

(Note that our convention is to consider the transfer of control as being to the line after the line 
indicating the end of a control structure. An alternative is to regard control as being transferred to the 
end line; this would give different line numbers in the LCSAJs, but they would be essentially the 
same. The branching structure of loops is language dependent and may be different from that used 
here.) 

 
(2->3) :  requires NOT End of File 

(2->15) : Jump  requires End of File 

(4->5) :  requires the loop to execute, i.e. Num DIV 2 is greater than or equal to 2 

(4->10) : Jump requires the loop to be a zero-trip, i.e. Num DIV 2 is less than 2 

(5->6) :  requires the IF statement on line 5 to be true 

(5->9) : Jump requires the IF statement on line 5 to be false 

(9->5) : Jump requires a further iteration of the FOR loop to take place 

(9->10) :  requires the FOR loop to have exhausted 

(10->11) :  requires Prime to be true 

(10->13) : Jump requires Prime to be false 

(14->2) : Jump must always take place 

 
From this list, find the LCSAJ start points. These are the start of the component (line 1) and lines to 
which control flow can jump from other than the preceding line (lines 2, 5, 9, 10, 13 and 15). For 
example, if the IF statement on line 10 is false, control will jump from line 10 to line 13. 



  Standard for Software Component Testing 
56 Working Draft 3.4  (27-Apr-01) © British Computer Society, SIGIST, 2001 

The first LCSAJ starts at line 1. The first possible jump following line 1 is (2->15), so our first 
LCSAJ is (1, 2, 15). 

There are other LCSAJs starting from line 1. If we had taken the (2->3) branch, we would have 
continued executing a linear code sequence with line 3. The next possible jump is (4->10), so our 
second LCSAJ is (1, 4, 10). 

Again, we could have taken the (4->5) branch at this point. At line 5, there is a choice of a jump to 
line 9 or a branch to the next line. At line 9, there is the choice of a jump back to line 5 or a branch to 
the next line. At line 10, there is the choice of a jump to line 13 or a branch to the next line. The 
linear code sequence can extend as far as line 14, where control flow must return to line 2 to test the 
WHILE condition. 

There are 6 LCSAJs starting from line 1. They are (1, 2, 15), (1, 4, 10), (1, 5, 9), (1, 9, 5), (1, 10, 13), 
and (1, 14, 2). To execute LCSAJ (1, 14, 2) requires a total of 5 branches to execute in sequence, 
namely (2->3), (4->5), (5->6), (9->10), (10->11) followed by the jump (14->2). 

Continue the search for each LCSAJ start line. Since the outer loop will always transfer control from 
line 14 to line 2, there will be a set of LCSAJs which start from line 2 rather than from line 1. The 
reasoning for how far they go is exactly the same as for the LCSAJs starting from line 1, so the set of 
LCSAJs starting from line 2 is (2, 2, 15), (2, 4, 10), (2, 5, 9), (2, 9, 5), (2, 10, 13), and (2, 14, 2). 

The complete set of LCSAJs are shown in the next clause. Note that the last LCSAJ is given as (15, 
15, exit). We can start from line 15 because it is possible to jump to line 15 when the WHILE 
condition on line 2 is false. The convention is that any linear code sequence reaching the last line of 
the component has a `jump' to the program exit. 

Test Cases 

In this example, some test cases are used as a starting point.  When these tests are analysed for 
LCSAJ coverage, a number of LCSAJs are shown as not covered. 

The initial test input consists of one prime number (5), one non-prime number (6), and a special case 
number (2). All numbers are input to the component at once in a single test (without ending the 
program and restarting it). The initial test case set is: 

 

Test Case Input Expected Outcome 

1 5 5 is prime 

 6 2 is a factor of 6  

  3 is a factor of 6 

 2 2 is prime 

  End of prime number program 
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LCSAJ Coverage Analysis 

The LCSAJs are shown below, together with coverage achieved by the initial test. Asterisks are used 
to highlight those LCSAJs which have not yet been covered. LCSAJ coverage is normally measured 
using a software tool. 

 
LCSAJ  

START   
LINE 

FINISH   
LINE 

JUMP TO 
LINE 

TIMES 
EXECUTED 

1 2 15 0 *** 
1 4 10 0 *** 
1 5 9 1 
1 9 5 0 *** 
1 10 13 0 *** 
1 14 2 0 *** 
2 2 15 1 
2 4 10 1 
2 5 9 0 *** 
2 9 5 1 
2 10 13 0 *** 
2 14 2 0 *** 
5 5 9 0 *** 
5 9 5 0 *** 
5 10 13 1 
5 14 2 0 *** 
9 9 5 0 *** 
9 10 13 0 *** 
9 14 2 1 
10 10 13 0 *** 
10 14 2 1 
13 14 2 1 
15 15 exit 1 

Number of LCSAJs 23 
Number executed 9 

Number not executed 14 
LCSAJ Coverage 39% 
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Additional tests may now be devised to maximise the LCSAJ Coverage. These are described below. 

LCSAJ Comments 

(1, 2, 15) A new test is needed with no data, so the End of File is found immediately. 

(1, 4, 10) A new test is needed with a number less than 4 as first in the list. 

(1, 9, 5) A new test is needed with an even number greater than 5 as first in the list. 

(1, 10, 13) A new test is needed with the number 4 as first in the list. 

(2, 5, 9) This will be executed with an odd number greater than 4 which is not the first in the 
list. 

(2, 10, 13) This will be executed with the number 4 which is not the first in the list. 

(5, 5, 9) This will be executed by a number greater than 6. 

(5, 9, 5) This will be executed by an odd non-prime number greater than 7. 

(9, 9, 5) This will be executed by a number greater than 7. 

(9, 10, 13) This will be executed by an odd non-prime number greater than 8. 

 
Infeasible LCSAJs 

After executing line 7, Prime has the value false. The branch from line 10 to 11 requires Prime to be 
true. Hence, the following 3 LCSAJs whose linear code sequence contains at least the section from 
line 7 to line 11 are infeasible: (1, 14, 2), (2, 14, 2) and (5, 14, 2). 

The remaining LCSAJ (10, 10, 13) is also infeasible. This LCSAJ requires Prime to be false on line 
10. However, for the LCSAJ to start at line 10, it is necessary to jump from line 4 to line 10, i.e. a 
zero-trip loop. This implies that line 3 has been executed in the previous LCSAJ, setting Prime to 
true. This LCSAJ is not infeasible by itself but it is infeasible in any combination with others. 

New Test Sets 

Test Case Input Expected Output LCSAJs executed 

2 <none> End of prime number 
program 

(1, 2, 15) 

3 2 2 is prime (1, 4, 10) 

 4 2 is a factor of 4 (2, 10, 13) 

  End of prime number 
program 

 

4 8 2 is a factor of 8 (1, 9, 5) 

  4 is a factor of 8 (5, 5, 9) 

  End of prime number 
program 

 

5 4 2 is a factor of 4 (1, 10, 13) 

 11 11 is prime (2, 5, 9) 

   (9, 9, 5) 

   (5, 5, 9) 

   (9, 10, 13) 

  End of prime number 
program 
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By running these extra tests, LCSAJ coverage is maximised with 19 of 23 LCSAJs executed, a 
measure of 83%. 

B.13 Random Testing 

Introduction 

This black box technique requires no partitioning of the component’s input domain, but simply 
requires test inputs to be chosen from this input domain at random.  We illustrate the technique by 
means of an example. 

 
Example 

Consider a component that transforms coordinates, with the following specification: 

 
The component shall transform the Cartesian coordinates (x,y) for screen 
position into their polar equivalent (r,H) using the equations: r= sqrt (x2+y2) 
and cos H = x/r.  The origin of the Cartesian coordinates and the pole of the 
polar coordinates shall be the centre of the screen and the x-axis shall be 
considered the initial line for the polar coordinates progressing counter-
clockwise.  All inputs and outputs shall be represented as fixed-point numbers 
with both a range and a precision.  These shall be: 
Inputs 
x - range -320..+320, in increments of 1/26 
y - range -240..+240, in increments of 1/27 
Outputs 
r - range 0..400, in increments of 1/26 
H - range 0..((2*pi)-1/26), in increments of 1/26 

 
No information is available about the operational distribution of the inputs to the component, so a 
uniform distribution is used.  For each test case a random test input value is selected for both x and y, 
using the definitions provided in the component specification and based on a uniform distribution 
across their defined ranges.  From the definitions we can see that in any one random test case x can 
take one of 40,961 values, while y can take one of 61,441 values.  Care should be taken if using an 
expected operational distribution rather than a uniform distribution.  An expected distribution that 
ignores parts of the input domain can lead to unexpected error conditions being left untested. 

Random testing may be performed either manually or using automated test tools.  Random testing is 
most cost-effective when fully automated as then very many tests can be run without manual 
intervention.  However, to achieve full automation it must be possible to: 

 • automatically generate random test inputs; and  
either • automatically generate expected results from the specification;  
or • automatically check test outputs against the specification. 

 
The automatic generation of random test input values is not difficult using a pseudo-random number 
generator as long as the component’s inputs are well-defined.  If the test input values are produced 
using a pseudo-random number generator, then these values do not need to be recorded explicitly as 
the same set can be reproduced.   This is normally possible if a 'seed' value has been used to prime the 
pseudo-random number generator and this value is recorded. 
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The automatic generation of expected outputs or the automatic checking of outputs, is however more 
problematic.  Generally it is not practicable to automatically generate expected outputs or 
automatically check outputs against the specification, however for certain components it is possible, 
such as where: 

• trusted independently-produced software that performs the same function as the component 
under test is available (presumably not meeting the same constraints such as speed of 
processing, implementation language, etc.); 

• the test is concerned solely with whether the component crashes or not (so the expected 
result is ‘not to crash’); 

• the nature of the component’s output makes it relatively easy to check the result.  An 
example of this is a sort function where it is a simple task to automatically check that the 
outputs have been sorted correctly; 

• it is easy to generate inputs from the outputs (using the inverse of the component’s function).  
An example of this is a square root function where simply squaring the output should 
produce the input. 

 
The coordinate transformation component can be checked automatically using the inverse function 
approach. In this case, rcosH=x can be obtained directly from the component’s specification.  By 
some analysis rsinH=y can also be deduced.  If these two equations are satisfied to a reasonable 
numerical tolerance then the component has transformed the coordinates correctly. 

Even when full automation of random testing is not practicable its use should still be considered as  it 
does not carry the large overhead of designing test cases as required by the non-random techniques. 

While no coverage measure is defined, a completion criterion can be set as a target level of probability 
of non-conforming outcome (e.g. 0.001) together with confidence  interval bounds (say 95%). 

For components with larger input sets than this small example the “Symbolic Input Attribute 
Decomposition” (SIAD) tree (ref: Quality Programming, C-K Cho, 1987, ISBN 0-471-84899-9) is a 
useful method for organising the input domain for random sampling before test case design. 

 

B.14 Other Testing Techniques 

Any techniques not explicitly defined that are used should be sent to the editors to be considered for 
inclusion in a later version of the Standard.  These details can be submitted in a variety of ways, as 
described in clause E.1 
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Annex C Test Technique Effectiveness  (informative) 
 

Up to this point the Standard has provided no guidance on either the choice of test case design 
techniques or test completion criteria (sometimes known as test adequacy criteria), other than that 
they should be selected from clauses 3 and 4 respectively.  The main reason for this is that there is no 
established consensus on which techniques and criteria are the most effective.  The only consensus is 
that the selection will vary as it should be dependent on a number of factors such as criticality, 
application area, and cost.  Research into the relative effectiveness of test case design and 
measurement techniques has, so far, produced no definitive results and although some of the 
theoretical results are presented below it should be recognised that they take no account of cost. 

There is no requirement to choose corresponding test case design and test measurement techniques.  
In fact it is good practice to use functional test case design techniques and structural test measurement 
techniques.  Functional techniques are effective at detecting errors of omission, while structural 
techniques can only detect errors of commission.  So a test plan could typically require boundary 
value analysis to be used to generate an initial set of test cases, while also requiring 100% branch 
coverage to be achieved.  This diverse approach could, presumably, lead to branch testing being used 
to generate any supplementary test cases required to achieve coverage of any branches missed by the 
boundary value analysis test case suite. 

Ideally the test coverage levels chosen as test completion criteria should, wherever possible, be 100%.  
Strict definitions of test coverage levels have sometimes made this level of coverage impracticable, 
however the definitions in clause 4 have been defined to allow infeasible coverage items to be 
discounted from the calculations thus making 100% coverage an achievable goal. 

With test completion criteria of 100% (and only 100%) it is possible to relate some of them in an 
ordering, where criteria are shown to subsume, or include, other criteria.  One criterion is said to 
subsume another if, for all components and their specifications, every test case suite that satisfies the 
first criterion also satisfies the second.  For example, branch coverage subsumes statement coverage 
because if branch coverage is achieved (to 100%), then statement coverage is always guaranteed to be 
achieved (to 100%) as well. 

It should be noted that the 'subsumes' relation described here strictly links test coverage criteria 
(rather than test case design techniques) and so only provides an indirect indication of the relative 
effectiveness of test case design techniques. 

Not all test coverage criteria can be related by the subsumes ordering and the functional and structural 
criteria are not related at all.  This leads to a partial ordering of criteria, illustrated in figure C.1, 
where an arrow from one criterion to another indicates that the first criterion subsumes the second.  
Where a test coverage criterion does not appear in the partial orderings then it is not related to any 
other criterion by the subsumes relation. 
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B

S

MCDC

BC

L

All Paths

DU

DPU

DCU

where: 
 
B         -   Branch coverage/Decision coverage 
BC       -   Branch Condition coverage 
BCC    -   Branch Condition Combination coverage 
DCU    -  All C-uses coverage 
DPU    -  All P-uses coverage 
DU      -  All du-paths coverage 
L         -   LCSAJ coverage 
MCDC -   Modified Condition Decision coverage 
S         -   Statement coverage 
 

BCC

 
 

Figure C.1 Partial Ordering of Structural Test Coverage Criteria 
 

 

Despite its intuitive appeal the subsumes relation suffers a number of limitations that should be 
considered before using it to choose test completion criteria: 

• Firstly it relates only a subset of the available test completion criteria and inclusion in 
this subset provides no indication of effectiveness, so other criteria not shown in figure 
C.1 should still be considered. 

• Secondly, the subsumes relation provides no measure of the amount by which one 
criterion subsumes another and subsequently does not provide any measure of relative 
cost effectiveness. 

• Thirdly, the partial orderings only apply to single criteria while it is recommended that 
more than one criterion is used, with at least one functional and one structural criterion. 

• Finally, and most importantly, the subsumes relation does not necessarily order test 
completion criteria in terms of their ability to expose errors (their test effectiveness).  It 
has been shown, for instance, that 100% path coverage (when achievable) may not be as 
effective, for some components, as some of the criteria it subsumes, such as those 
concerned with data flow.  This is because some errors are data sensitive and will not be 
exposed by simply executing the path on which they lie, but require variables to take a 
particular value as well (E.g. An 'unprotected' division by an integer variable may 
erroneously be included in a component that will only fail if that variable takes a 
negative value).  Satisfying data flow criteria can concentrate the testing on these 
aspects of a component's behaviour, thus increasing the probability of exposing such 
errors.  It can be shown that in some circumstances test effectiveness is increased by 
testing a subset of the paths required by a particular criteria but exercising this subset 
with more test cases. 

The subsumes relation is highly dependent on the definition of full coverage for a criterion and 
although Figure C.1 is correct for the definitions in clause 4 of this Standard it may not apply to 
alternative definitions used elsewhere. 
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Annex E Document Details  (informative) 
 

E.1 Method of commenting on this draft 

Comments are invited on this draft so that the document can be improved to satisfy the requirement 
of an ISO standard. 

When making a comment, be sure to include the following information: 

- your name and contact details (address, telephone number, etc.); 
- the version number of the standard; 
- exact part of the standard; 
- supporting information, such as the reason for a proposed change. 
 

You can submit comments in a variety of ways, which in order of preference are as follows: 

a) by post to Stuart Reid, Cranfield University DoIS/CISE, RMCS, Shrivenham, Swindon, 
Wilts, SN6 8LA, UK. 

b) by fax to +44 1793 785366 (telephone +44 1793 785490). 

c) by E-mail to Stuart.Reid@rmcs.cranfield.ac.uk. 

E.2 Status 

This standard has been amended as a result of the inspection carried out on May 4th 1995 and the 
comments received from external reviewers. 

It has also had contact details updated in April 2001. 

E.3 Availability 

This standard is available on the World Wide Web at the following URL: 
http://www.testingstandards.co.uk/. 


